St 2282

Kreisverkehrsplatz nördlich Trappstadt

Wasserrechtliche Behandlung

vom

30.01.2023

Unterlagenverzeichnis

Unterlage 1	Erläuterungsbericht zur Wasserrechtlichen Beh	andlung
	(Anlagen siehe unten)	
Unterlage 3	Übersichtslageplan	
	3 Übersichtslageplan	M = 1:25.000
	3.1 Übersicht Bäche und Gräben	M = 1:10.000
Unterlage 5	Lageplan	
	5 / 1 Lageplan	M = 1:500
Unterlage 6	Höhenpläne	
	6 / 2 Staatsstraße St 2282	M = 1:500/50
	6 / 3 Staatsstraße St 2283	M = 1:500/50
Unterlage 14	Straßenquerschnitt	
	14.1 / 1 Straßenquerschnitte RQ 1 bis RQ 4	M = 1:50
Unterlage 18	Entwässerungspläne	
	18.2 / 1 Lageplan Entwässerung	M = 1 : 250
	18.2 / 2 Lageplan Einzugsgebiete	M = 1:500
Anlage 1	Ermittlung der Einzugsflächen und Nachweis der Ve	rsickerung
Anlage 2	Qualitativer Nachweis der Regenwasserbehandlung	nach DWA-M 153
Anlage 3	Anlage 3 Ermittlung erforderliches Regenrückhaltevolumen nach DWA-A117	

Nachweis der Erfüllung des erforderlichen Rückhaltevolumens

Maßgebende Regenspende

Anlage 4

Anlage 5

	Unterlage 1
Staatliches Bauamt Schweinfurt	
Straße / Abschnittsnummer / Station:	St 2282_350_7.536 - St 2282_380_0.130 St 2283_200_3.392 - St 2283_220_0.090
Kreisverkehrspl	St 2282 latz nördlich Trappstadt
PROJIS-Nr.:	Dieser Plan ist Bestandteil der
	☐ Bewilligung (§ 8 WHG) ☐ Anlagengenehmigung (§ 36 WHG i.V.m. Art. 20 Bay
	Erlaubnis (§ 15 WHG / Art. 15 BayWG) Ausnahmegenehmigung (§ 78 WHG)
	Planfeststellung (§ 67 WHG) Rechtsverordnung (§§ 51, 52, 53 Abs. 4 WHG)
	☐ Plangenehrilgung (§ 67 WHG) ☐ 4.2.3 - 64.1/1/4 -
	Erteilt mit Bescheid vom 2.9. Okt. 2025r. 33- 2023 (9
	Bad Neustadt a. d. Saale, Landratsam/Bhön-Grabfe
	i. A.
	den 2.9. Okt. 2025
Erläute	erungsbericht
	Im wasserrechtlichen Verfahren geprüft. AMTLICHER SACHVERSTÄNDIGER
. VVAS	SSERWIRTSCHAFTSAMT BAD KISSINGEN
	A STATE BAD KISSINGEN
	Juni 2025 Cyd
ufgestellt:	
Staatliches Bauamt Schweinfurt	
(1 1 2 1/1	
Rott (Baudirektor)	
Schweinfurt, den 30.01.2023	1.5
, , , , , , , , , , , , , , , , , , , ,	

Inhaltsv	erzeichnis	Seite
1 1.1 1.2 1.3 1.4 1.5	Darstellung des Vorhabens Planerische Beschreibung Straßenbauliche Beschreibung Straßenquerschnitte Verkehrsbelastung Streckengestaltung	3 3 4 4 6
 2.1 2.2 2.3 	Berechnungsgrundlagen Beschreibung des Untersuchungsgebietes Berechnungsgrundlagen Berechnungsansätze	12 12 12 12
3 3.1 3.2 3.3 3.4 3.5 3.6	Vorhandene Situation Vorfluter Wasserschutzgebiete Überschwemmungsgebiete Wassersensible Bereiche Baugrund Grundwasser	13 13 13 13 13 13
4 4.1 4.2	Geplante Maßnahme Allgemeines Festlegung der Entwässerungsabschnitte	13 13 14
5 5.1 5.2 5.3 5.4 5.5	Ermittlung des Regenwasserabflusses Regenspende Regenhäufigkeit Abflussbeiwerte (Spitzenabflussbeiwerte) Abflussmengen (Spitzenabfluss) Schlussbemerkung	15 15 15 15 15
6 6.1 6.2	Gewässerbenutzung, Qualitative Nachweise zur Einleitung in ein Gewässer Bagatellgrenzen – Prüfung der Notwendigkeit der Regenwasserbehandlung Qualitativer Nachweis Einleitstellen	16 16 16
7. 7.1 7.2	Nachweis der Rückhalteräume Zusammenfassung der Rückhalteräume Berechnungsansatz gemäß DWA-A117	17 17 17
Anlagen Anlage 1 Anlage 2 Anlage 3 Anlage 4	Ermittlung der Einzugsflächen und Nachweis der Versickerung Qualitativer Nachweis der Regenwasserbehandlung nach DWA-M 153 Ermittlung des Regenrückhaltevolumens nach DWA-A117 Nachweis der Erfüllung des erforderlichen Rückhaltevolumens	

1 Darstellung des Vorhabens

1.1 Planerische Beschreibung

Das Staatliche Bauamt Schweinfurt plant nördlich von Trappstadt am Knoten der Staatsstraßen St 2282 / St 2283 den Neubau eines Kreisverkehrs. Auf der östlichen Seite des Kreisverkehrs soll ein Geh- und Radweg von Trappstadt kommend in nördliche Richtung mit hergestellt werden.

Baubeginn ca. ist 170 m westlich der Kreuzung, Bauende 90 m nördlich, 130 m östlich sowie 113 m südlich der Kreuzung.

Kostenträger der geplanten Baumaßnahme ist der Freistaat Bayern als Träger der Straßenbaulast. Der Markt Trappstadt wird anteilig für den Ausbau von Geh-, Rad- und Wirtschaftswegen beteiligt.

Das Vorhaben liegt im unterfränkischen Landkreis Rhön-Grabfeld ca. 350 m nördlich vom Markt Trappstadt in einer Höhenlage von 314 m und 322 m über dem Meeresspiegel.

Nur 8 km westlich befinden sich die Kurstadt Bad Königshofen, 1 km östlich grenzt das Bundesland Thüringen an. 50 km südwestlich liegen die Kurstadt Bad Kissingen und die Stadt Schweinfurt.

Nach den Richtlinien für integrierte Netzgestaltung RIN sind die Staatsstraßen:

- St 2282 in die Gruppe der Verbindungsfunktionsstufe III (Verbindung von Grundzentren zu Mittelzentren und zwischen Grundzentren) und die
- St 2283 in die Gruppe der Verbindungsfunktionsstufe IV (Verbindung von Gemeinden zu Gemeindeteilen) einzuordnen.

Eine Umstufung im Straßensystem ist nicht vorgesehen.

Der Radweg entspricht nach ERA der Kategoriegruppe AR II, Radweg außerhalb bebauter Gebiete mit überregionaler Radverkehrsverbindung für den Alltagsradverkehr auf Entfernungen von mehr als 10 km (z. B. Verbindungen zwischen Mittel- und Oberzentren, Stadt-Umland-Verbindungen).

1.2 Straßenbauliche Beschreibung

Kreisverkehrsplatz / Knotenpunktarm / Achse:

Der bestehende Knoten liegt außerhalb von Ortschaften und besteht aus vier Ästen der sich kreuzenden Staatsstraßen St 2282 und St 2283. Der Außendurchmesser der Kreisfahrbahn beträgt 42 m. Folgende Ausbaulängen der einzelnen Knotenpunktarme und Wege sind vorgesehen:

Ausbaulänge rund

 Kreisverkehr 	- AX_KV	L = 107 m
 St 2282 - Bad Königshofen 	- AXE_1:	L = 107 m
 St 2283 - Eicha 	- AXE_2:	L= 69 m
 St 2282 - Linden 	- AXE_3:	L = 109 m
St 2283 - Trappstadt	- AXE_4:	L = 92 m
Summe		L = 484 m
Geh- und Radweg, Wirtschaftswege	А	usbaulänge rund
Geh- und Radweg asphaltiert		
B = 2,50 m	- AX_GR1	L = 100 m
J ,	- AX_GR1	L = 100 m
B = 2,50 m	- AX_GR1 - AX_GR1, 2, 3 4	L = 100 m L = 136 m
B = 2,50 m • Wirtschaftsweg asphaltiert	_	7
B = 2,50 m • Wirtschaftsweg asphaltiert B = 3,0 m	_	7
 B = 2,50 m Wirtschaftsweg asphaltiert B = 3,0 m Wirtschaftsweg Schotterbefestigt 	- - AX_GR1, 2, 3 4	L = 136 m

1.3 Straßenquerschnitte

In den Lageplänen und Straßenquerschnitten zu den wassertechnischen Berechnungen – Unterlage 18.2 – sind die geplanten Entwässerungssysteme dargestellt. Folgende Straßenquerschnitte sind vorgesehen:

Tabelle 1: Straßenquerschnitte

-im Abschnitt von Bau-km 0+000 bis 1+000		
Kreisfahrbahn Außendurchmesser 42 m		
 St 2282- AXE_1 Richtung Bad Königshofen 	einbahniger, zweistreifiger Regelquerschnitt	9,50 m
• St 2282- AXE_3 Richtung Linden	einbahniger, zweistreifiger Regelquerschnitt	9,50 m
• St 2283- AXE_2 Richtung Eicha	einbahniger, zweistreifiger Regelquerschnitt	9,50 m
• St 2283- AXE_4 Richtung Trappstadt	einbahniger, zweistreifiger Regelquerschnitt	9,50 m

-im Abschnitt von Bau-km 0+000 bis 1+	Breite	
• Geh- und Radweg AX_GR1 Südseite	2,50 m	
 Geh-, Rad- und Wirtschaftsweg AX_GR1 – Nordseite 	einbahniger Regelquerschnitt	3,00 m
Geh-, Rad- und Wirtschaftsweg AX_GR2	einbahniger Regelquerschnitt	3,00 m
Wirtschaftsweg AX_GR3	einbahniger Regelquerschnitt	3,00 m
Wirtschaftsweg AX_GR4	einbahniger Regelquerschnitt	3,00 m

1.4 Verkehrsbelastung

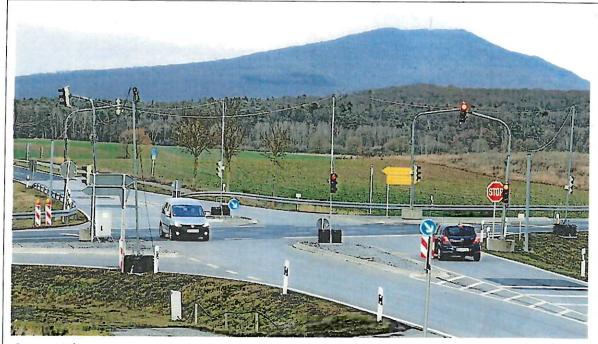

Nachfolgende Tabelle gibt einen Überblick zur Verkehrsbelegung.

Tabelle 2: Verkehrsbelastung St 2282 und St 2283 – gemäß Stromzählung vom 02.04.2019

	Bad Königshofen St2282	Linden St 2282	Trappstadt St2283	Eicha St2283
DTV – Kfz / 24 h	1757	1809	836	656
DTV (SV) – Kfz / 24 h	235 ≙ 13,4%	250 <u>≙</u> 13,8%	105≙ 12,6%	86≙ 13,1%

An der "Trappstädter Kreuzung" hat es in der Vergangenheit Unfälle auch mit tödlichem Ausgang gegeben. Anfang 2017 wurde eine provisorische Lichtzeichenanlage installiert. Seither ist das Unfallgeschehen stark zurückgegangen.

An dem vierarmigen Knotenpunkt ist die St 2282 aufgrund der Verkehrsbelegung die übergeordnete, vorfahrtberechtigte Straße. Die Ausbildung ist plangleich.

"Trappstädter Kreuzung" mit Blick vom südwestlichen Wirtschaftsweg Trappstadt nach Norden

Der Ausbau der Kreuzung St 2282 / St 2283 als provisorische Ampelkreuzung genügt nicht den an diesen Knotenpunkt gestellten Anforderungen. Die Fahrbahnen werden durch Radfahrer mitbenutzt, was die Unfallgefahr für alle Verkehrsteilnehmer erhöht.

Die Kreuzung mit Lichtsignalanlage entspricht nicht der Ausbildung der Knotenpunkte im Umgebungsfeld. Die Reisegeschwindigkeit wird reduziert. Mit dem neuen Kreisverkehr wird der Verkehr flüssiger.

Der Zustand der Fahrbahndecken und bestehenden Wege genügt im Ausbaubereich nicht den Anforderungen, die an öffentliche Verkehrswege zu stellen sind.

- Schäden wie Rissbildung, Spurrinnen, ausgebrochene Fahrbahnränder prägen das Bild der Fahrbahnen und Wirtschaftswege und weisen auf eine unzureichende Tragfähigkeit des Fahrbahnoberbaus hin.
- Die Betonfundamente der provisorischen Ampelanlage auf Banketten stellen ein erhöhtes Unfallrisiko dar.

Aus diesen Gründen soll die Kreuzung - so wie es an der Bad Königshofer Nordumgehung an zwei gefährlichen Knotenpunkten geschehen ist – zu einem Kreisverkehr umgebaut werden.

- Damit werden alle zum Kreisel führenden Straße hinsichtlich Vorfahrt gleichberechtigt.
- Die Knotenpunktarme erhalten Fahrbahnteiler, wobei am östlichen Knotenpunktarm eine Überquerungshilfe für Fußgänger und Radfahrer auszubilden ist. Dabei werden die Belange von Menschen mit Mobilitätsbeeinträchtigung unter wirtschaftlich vertretbarem Aufwand berücksichtigt.
- Die Planung erfolgte unter Berücksichtigung der Belange des Naturschutzes.
- Die Entwässerung der Fahrbahnen und Wege mit vorhandenen Mulden /Gräben und Durchlässen wurde in der Planung berücksichtigt und mit einbezogen.
- Mit dem Neubau des Radweges neben der Fahrbahn der St 2283 wird die Verkehrssicherheit erhöht.

1.5 Streckengestaltung

Trappstadt liegt im Grabfeld in der Region Main-Rhön. Das Umgebungsland ist von einer hügeligen Landschaft geprägt. Die umgebenden Flächen werden landwirtschaftlich genutzt.

Die Trassierung ist an die Linienführung der Staatstraßen St 2282 und St 2283 sowie die Wegeführung im Bestand angelehnt.

Bestehende Baulichkeiten zur Entwässerung sowie Einmündungen von Wirtschaftswegen wurden bei der Trassierung berücksichtigt.

Nachfolgende Bilddokumentation zeigt den Streckenverlauf im bestehenden Gelände.

Kreuzung St 2283 von Norden nach Süden

Kreuzung St 2283 von Süden nach Norden

Kreuzung St 2283 von Süden nach Norden

Kreuzung St 2283 von Süden nach Norden

Kreuzung St 2282 von Osten nach Westen

St 2282 _ AXE 1 westlicher Ast von Bad Königshofen kommend in Richtung Hildburghausen

St 2282 $_$ AXE 1 westlicher Ast von Bad Königshofen kommend in Richtung Hildburghausen

Kreuzung St 2282 von Westen nach Osten

St 2282 _AXE 3 östlicher Ast von Bad Königshofen kommend in Richtung Hildburghausen

St 2283 _AXE 4 südlicher Ast von Norden kommend in Richtung Trappstadt

St 2283 _AXE 4 südlicher Ast von Norden kommend in Richtung Trappstadt

St 2283 _AXE 4 südlicher Ast von Norden kommend in Richtung Trappstadt

St 2283 _AXE 2 nördlicher Ast von Süden kommend Richtung Eicha

St 2283 _AXE 2 nördlicher Ast von Süden kommend Richtung Eicha

St 2283 _AXE 2 nördlicher Ast von Süden kommend Richtung Eicha

Geh- und Radweg an St 2283 – von Trappstadt Richtung Eicha

Geh- und Radweg an St 2283 – von Eicha Richtung Bad Königshofen

2 Berechnungsgrundlagen

2.1 Beschreibung des Untersuchungsgebietes

Im unmittelbaren Kreuzungsbereich sind Dammfußmulden und -gräben vorhanden, deren Fließrichtung von Osten nach Westen führt.

Über die bestehenden Mulden und Gräben wird das anfallende Niederschlagswasser der Verkehrsanlagen

- nördlich der St 2282 in den Vorfluter Augraben und
- südlich der St 2282 in den Vorfluter Weißbach

eingeleitet.

Die Staatsstraßen und Wege entwässern sowohl über vorhandene Durchlässe als auch über die geplanten Entwässerungseinrichtungen.

Die Vorfluter entsprechen dem Gewässer III. Ordnung. Der Unterhalt unterliegt damit dem Kreis Rhön-Grabfeld.

2.2 Berechnungsgrundlagen

- Richtlinien für die Anlage von Straßen, Teil Entwässerung (RAS EW, Ausg. 2005)
- Arbeitsblatt DWA-A 117 (Bemessung von Regenrückhalteräumen)
- Merkblatt DWA-M 153 (Handlungsempfehlungen zum Umgang mit Regenwasser 2007)
- Regenreihen des Deutschen Wetterdienstes, KOSTRA DWD 2000

Für die *Regenwasserbehandlung* werden die qualitativen und quantitativen Nachweise nach dem Merkblatt DWA-M 153 durchgeführt.

Die Bemessung der Regenrückhalteräume erfolgt nach Merkblatt DWA-M 153 und Arbeitsblatt DWA-A 117.

2.3 Berechnungsansätze

Entwässerungsleitungen, Drainagen

Die Entwässerungskanäle sind für das einjährige Regenereignis (n=1) zu bemessen. Drainagen sind nach Möglichkeit in das freie Gelände oder direkt in den Vorfluter abzuleiten. Die Einbindung in die Abwasserbehandlungsanlagen von Trappstadt soll unterbleiben.

Regenrückhaltung

Für die Bemessung der Regenrückhalteräume werden die versiegelten Flächen der Fahrbahnen mit Nebenanlagen (Gehwege bzw. Geh- und Radwege, Bankette, Böschungen und Mulden) zum Ansatz gebracht. Die Anlagen sind für das 2-jährige Regenereignis (n=0,5*1/a) zu bemessen.

Ansatz Vorfluter nach DWA-M 153

- Augraben und Weißbach Fließgewässer, kleiner Flachlandbach (bsp < 1 m; v < 0,3m/s)
 Gewässertyp G 6 mit 15 Gewässerpunkten
- Drosselung auf zulässige Regenabflussspende qr = 15 l/(s*ha)
- Trockenwetterabfluss Q_T = 0 1/s
- Fließzeit T = 5 min

Versickerung

 Bei Einleitung in Grundwasser im Zuge der Versickerung – Grundwasser außerhalb von Trinkwassereinzugsgebieten, Gewässertyp G12 mit 10 Gewässerpunkten.

3 Vorhandene Situation

3.1 Vorfluter

Nordwestlich des Plangebietes verläuft der Augraben als Vorfluter. Südwestlich des Plangebietes verläuft der Vorfluter Weißbach. Nordwestlich von Trappstadt mündet der Augraben in den Weißbach.

Das anfallende Niederschlagswasser der Staatsstraßen und Wege wird derzeit über Bankette, Böschungen und Mulden breitflächig behandelt und versickert.

3.2 Wasserschutzgebiete

Wasserschutzgebiete werden nicht berührt.

3.3 Überschwemmungsgebiete

Ein amtlich festgesetztes Überschwemmungsgebiet ist im Ausbaubereich nicht vorhanden.

3.4 Wassersensible Bereiche

Das Planungsgebiet befinden sich keine Quellenschutzgebiete.

3.5 Baugrund

Tonig, schluffiger Untergrund.

3.6 Grundwasser

Gemäß Bodengutachten wurde bis maximal 4,0 m unter Fahrbahn-/ Geländeoberkante kein geschlossenes Grundwasser angeschnitten.

4 Geplante Maßnahmen

4.1 Allgemeines

Mit vorliegender Planung ist vorgesehen, das anfallende Niederschlagswasser aus der Verkehrsanlage der Staatsstraßen St 2282 und St 2283, sowie der Geh-, Rad- und Wirtschaftswege AX_GR1, GR2 und GR3 vorgereinigt und gedrosselt in die Vorfluter Augraben und Weißbach einzuleiten.

Lediglich das anfallenden Niederschlagswasser aus dem Wirtschaftsweg AX_GR4 (nordwestlicher Quadrant) kann vollständig vor Ort versickert werden.

4.2 Festlegung der Entwässerungsabschnitte

Die Entwässerungsabschnitte sind in der Unterlage 18.1 Anlage1 zusammengefasst und in der Unterlage U18.2.2 – Lageplan Einzugsgebiete dargestellt.

EZG auf	Einleitstelle E1 – Vorfluter Augraben
Einleitstelle E1	Einzugsgebiete A1, A3, A5 bis A13 (Staatsstraßen St 2282 und St 2283 mit begleitenden Geh- Rad- und Wirtschaftwegen).
	Das Niederschlagswasser soll breitflächig über Nebenanlagen (Bankett, Böschungen, Mulden) vor Ort behandelt, versickert, zurückgehalten und über den nachzuprofilierenden Graben nordwestlich der St 2282 abgeleitet werden.
	Die Behandlung des Niederschlagswassers erfolgt über die belebte Oberbodenzone. Hierfür werden Böschungen mit einer Neigung von <1:2 angelegt und mit 20 cm Oberboden angedeckt.
	Der Nachweis nach DWA-M 153 ist in den beigefügten Anlagen geführt.
	Für die Rückhaltung werden die Mulden und Gräben mit Muldenschwellen versehen. Das erforderliche Rückhaltevolumen beträgt 64,5 m³.
Section 1	Der Nachweis ist in den beigefügten Anlagen geführt.
EZG auf Einleitstelle E2	-Einleitstelle E2 - Vorfluter Weißbach
-cirileitstelle c2-	Einzugsgebiete A14, A15, A16 (Staatsstraßen St 2282 und St 2283).
	Das Niederschlagswasser soll breitflächig über Nebenanlagen (Bankett, Böschungen, Mulden) vor Ort behandelt, versickert, zurückgehalten und über den nachzuprofilierenden Graben südwestlich der St 2282 abgeleitet werden.
	Die Behandlung des Niederschlagswassers erfolgt über die belebte Oberbodenzone. Hierfür werden Böschungen mit einer Neigung von < 1:2 angelegt und mit 20 cm Oberboden angedeckt.
	Der Nachweis nach DWA-M 153 ist in den beigefügten Anlagen geführt.
	Für die Rückhaltung werden die Mulden und Gräben mit Muldenschwellen versehen. Das erforderliche Rückhaltevolumen beträgt 22,8 m³.
	Der Nachweis ist in den beigefügten Anlagen geführt.
EZG auf Einleitstelle E3	Einleitstelle E3 – Grundwasser
(Breitflächige	Einzugsgebiete A2 und A4 (Wirtschaftsweg AX_GR4 nordwestlicher Quadrant)
Versickerung)	Das Niederschlagswasser soll breitflächig über Nebenanlagen (Bankett, Böschungen, Mulden) vor Ort behandelt und versickert werden.
	Die Behandlung des Niederschlagswassers erfolgt über die belebte Oberbodenzone. Hierfür werden Böschungen mit einer Neigung von < 1:2 angelegt und mit 20 cm Oberboden angedeckt.
	Der Nachweis nach DWA-M 153 ist in den beigefügten Anlagen geführt.
	Im Zuge der Versickerung ist keine Rückhaltung erforderlich. Der Nachwei s ist in den beigefügten Anlagen geführt.

5 Ermittlung des Regenwasserabflusses

5.1 Regenspende

Gemäß RAS-EW, Ausgabe 2005, ist für die Entwässerung von Straßen über Mulden, Seitengräben oder Rohrleitungen die Häufigkeit n = [1/a] anzusetzen. Es ergibt sich für den Planungsraum demnach folgende Regenspende:

• Regenspende $r_{15;1} = 108,7 \text{ l/(s x ha)}$

5.2 Regenhäufigkeit

Die Regenhäufigkeit n [1/a] gibt die Zahl der Regenereignisse an, die im Mittel pro Jahr auftreten. Für die Bemessung der Straßenentwässerungseinrichtungen werden nach RAS-EW (Ausgabe 2005) folgende Regenhäufigkeit angesetzt:

- Mulden, Seitengräben oder Rohrleitungen n = 1 (einmal im Jahr)
- Reinigungs- und Regenrückhalteanlagen n = 0,5 x 1/a (Wiederholung Regen alle 2 Jahre)

5.3 Abflussbeiwerte (Spitzenabflussbeiwerte)

Das Ableitungsvermögen wird als Spitzenabflussbeiwert Ψ s ausgedrückt:

$$\Psi s = \frac{\text{max. Abflussspende}}{\text{zugehörige Regenspende}} \frac{\text{q [l/(s \cdot ha)]}}{\text{r [l/(s \cdot ha)]}}$$

Folgende aufgeführten Spitzenabflussbeiwerte werden im Straßenraum angesetzt:

-	Fahrbahn, Geh- und Radwege direkte Einleitung in die Längsleitung	Ψs	= 0,9
2	Bankette (Schotterrasen)	Ψs	= 0,3
-	Damm-, Einschnittsböschungen	Ψs	= 0,3
-	Mulden	Ψs	= 0,3

5.4 Abflussmengen (Spitzenabfluss)

Fahrbahnentwässerung im Einschnitt (Längsleitung)

$$Q_{zu} = r_{D,n} * \sum A_{E,FB} * \psi_{S} [I/s]$$
 (Formel [2] RAS-EW, Ausgabe 2005)

Fahrbahnentwässerung über Böschung und Mulde am Dammfuß

$$Q_{zu} = r_{D,n} * \sum A_{E,FB} * \psi_S + (r_{D,n} - q_s) * \sum A_{E,Bo}[I/s]$$

Hierin bedeuten:

A E.Bö [ha]

-	Q _{zu} [I/s]	=	Zuflussmenge aus der Entwässerungsfläche für die Abflusssituation mit Straße
-	q _r [l/(s•ha)]	= ,	Zulässige Regenabflussspende nach Tabelle 3, M 153 bzw.
-	qs [l/(s•ha)]	=	Spezifische Versickerungsrate Böschung (einschließlich Seitenstreifen und Mulde am Dammfuß)
-	Q _d [l/s]	=	zulässige Abflussmenge zur Dimensionierung der Regenrückhaltebecken (Drosselabfluss)
-	$r_{D,n}$ [l/(s+ha)]	=	Regenspende der Fließzeit entsprechend der Dauer D und der Häufigkeit n [1/a]
-	A _{E,FB} [ha]	=	Größe der jeweiligen Entwässerungsteilfläche (Fahrbahn)

Größe der jeweiligen Entwässerungsteilfläche (Böschung)

5.5 Schlussbemerkung

Die Ergebnisse der qualitativen Nachweise der Regenwasserbehandlung nach DWA – M 153 sind in der Anlage 2 zusammengefasst.

Die Bemessung der Regenrückhaltevolumens nach DWA-A117 ist der Anlagen 3 zu entnehmen.

Der Nachweis der Erfüllung des erforderlichen Rückhaltevolumens ist der Anlage 4 zu entnehmen.

6 Gewässerbenutzung, Qualitative Nachweise zur Einleitung in ein Gewässer

6.1 Bagetellgrenzen - Prüfung der Notwendigkeit der Regenwasserbehandlung

Bei Einleitung in ein oberirdisches Gewässer kann von einer Regenwasserbehandlung abgesehen werden, wenn gemäß DWA-M 153, Punkt 6.1 gleichzeitig folgende drei Bedingungen eingehalten sind:

Einleitung der Einzugsflächen in Vorfluter Einleitstelle E1 und E2:

Α	Vorfluter entspricht Gewässertyp G1 bis G8	ja	Augraben, Weißbach ≙ Gewässertyp G 6
			Fließgewässer, kleiner Flachlandbach (b _{Sp} < 1 m; v < 0,3m/s) mit 15 Gewässerpunkten
В	die undurchlässigen Flächen entsprechen Flächentyp F1 bis F4 (geringe Verschmutzung)	ja	Flächentyp F4 (mittlere Verschmutzung) Straßen mit 300 bis 5.000 Kfz/24 h.
С	Innerhalb eines Gewässer- oder Uferabschnittes von 1.000 m Länge wird das Regenwasser von insgesamt nicht mehr als 2.000m² undurchlässiger Fläche eingeleitet.	nein	Die undurchlässigen Flächen sind größer.

Da nicht alle Bedingungen A bis C eingehalten werden, ist eine Regenwasserbehandlung erforderlich.

6.2 Qualitativer Nachweis Einleitstellen

Der Nachweis ist Anlage 2 "Qualitativer Nachweis der Regenwasserbehandlung nach DWA – M 153" zu entnehmen.

7 Nachweis der Rückhalteräume

7.1 Zusammenfassung der Rückhalteräume

Einzugsgebiet	erforderliches Rückhaltevolumen	Bemerkungen
EZG 1 – Mulden/ Gräben	erf. V = 64,5 m ³	Gedrosselter Abfluss in
EZG 2 – Mulden/ Gräben	erf. V = 22,8 m ³	Augraben, q _{Dr} = 16,67 l/s gedrosselter Abfluss in
EZG 3 – Mulden/ Gräben	-	Weißbach, q _{Dr} = 16,67 l/s Einleitung in Grundwasser
		(Versickerung)

Die Berechnung der erforderlichen Rückhalteräume erfolgt in Anlage 3 "Ermittlung des Regenrückhaltevolumens nach DWA-A117".

Das herzustellende Rückhaltevolumen ist in Anlage 4 "Nachweis der Erfüllung des erforderlichen Rückhaltevolumens" zusammengefasst.

7.2 Berechnungsansatz gemäß DWA -A117

Für die Bemessung wurden die nachfolgenden Berechnungsansätze zugrunde gelegt:

- Augraben und Weißbach Fließgewässer, kleiner Flachlandbach (bsp < 1 m; v < 0,3m/s)
 Gewässertyp G 6 mit 15 Gewässerpunkten
- Drosselung auf zulässige Regenabflussspende q_{Dr} = 15 l/(s*ha)
- Trockenwetterabfluss Q_T = 0 l/s
- Fließzeit T = 5 min
- Überschreitungshäufigkeit n = 0,5 /a
- Ermittlung der undurchlässigen Flächen
 (Es werden durch die befestigten Flächen der Straßen und Wege zum Ansatz gebracht.
 Nebenflächen aus Bankett und Böschungen versickern über die Böschungen s. RAS EW Punkt 1.3.2)
 - o Einleitstelle E1 befestigte Fläche $A_{E,b}$ = 0,384 ha, undurchlässige Fläche A_U = 0,345 ha
 - o Einleitstelle E2 befestigte Fläche $A_{E,b}$ = 0,136 ha, undurchlässige Fläche A_U = 0,122 ha
- Ermittlung Drosselabflussspende
 - $O \quad Q_{Dr,max} \quad = q_{Dr,k} \ x \ A_{EK}$
 - $\circ q_{Dr,U} = Q_{Dr} x Q_T / Au$
- Ermittlung Abminderungsfaktor f_A
 Fließzeit t_F = 5min
 Häufigkeit n = 0,5 /a
 f_A = 0,995 aus Bild 3
- Zuschlagsfaktor fz = 1,2
- Spezifisches Speichervolumen
 V_{s,u}=(_{rD,n}-_{qDr,R,u}) x D x f_z x f_A x 0,06

A138 - Programm des Bayerischen Landesamtes für Umwelt

Wasserwirtschaftsverwaltung

Version 01/2018

Muldenversickerung

Projekt:

Kreisverkehr Trappstadt

Bemerkung: Abschnitt A1 - A13 (einschl. A2, A4.1, A4.2)

Datum: 06.06.2025

1/a

Bemessungsgrundlagen

Angeschlossene undurchlässige Flächeohne genaue Flächenermittlung	A _{II}	:	3658	m²
Abstand Geländeoberkante zum maßgebenden Grundwasserstand	h GW	:	3	m
mittlere Versickerungsfläche	AS	:	3127	m²
Durchlässigkeitsbeiwert der gesättigten Zone des Untergrundes	k _f	1	1e-5	m/s
Maximal zulässige Entleerungszeit für n = 1	t E,max	:	24	
Zuschlagsfaktor gemäß DWA-A 117	fz	:	1,20	-

Starkregen nach: aus Datei

DWD Station : RG_Tra	opstadt T1.str		Räumlich i	nternoi	liert ?) -		
Gauß-Krüger Koord. Rechtswert:	_	m	Hochwert:				m	
Geogr. Koord. östl. Länge : Rasterfeldnr. KOSTRA-DWD-2010l	R horizontal	11	nördl. Breit vertikal	te:	0	•		"
Rasterfeldmittelpunkt liegt : Überschreitungshäufigkeit			r	1				1

Berechnungsergebnisse

-ordeningsergebilisse				
Muldenvolumen	\vee_{M}		72,1	m³
Einstauhöhe				
	Z		0,02	m
Entleerungszeit für n = 1	t⊨		1,3	h
Flächenbelastung	-	•		
	A _u /A _S	:	1,2	-
Zufluss	Q _{zu}	:	55.7	l/s
spezifische Versickerungsrate		•		_
	٩s	:	42,7	l/(s·ha)
maßgebende Regenspende	r D.n		82 1	I/(s·ha)
maßgebende Regendauer		Ċ		
garanta i togottuado,	D '		25	min

Warnungen und Hinweise

Keine vorhanden.

V with = 92 m3

A138 - Programm des Bayerischen Landesamtes für Umwelt

Wasserwirtschaftsverwaltung

Muldenversickerung

Projekt:

Kreisverkehr Trappstadt

Bemerkung: Abschnitt A14, A15, A16

Datum: 06.06.2025

Version 01/2018

Bemessungsgrundlagen

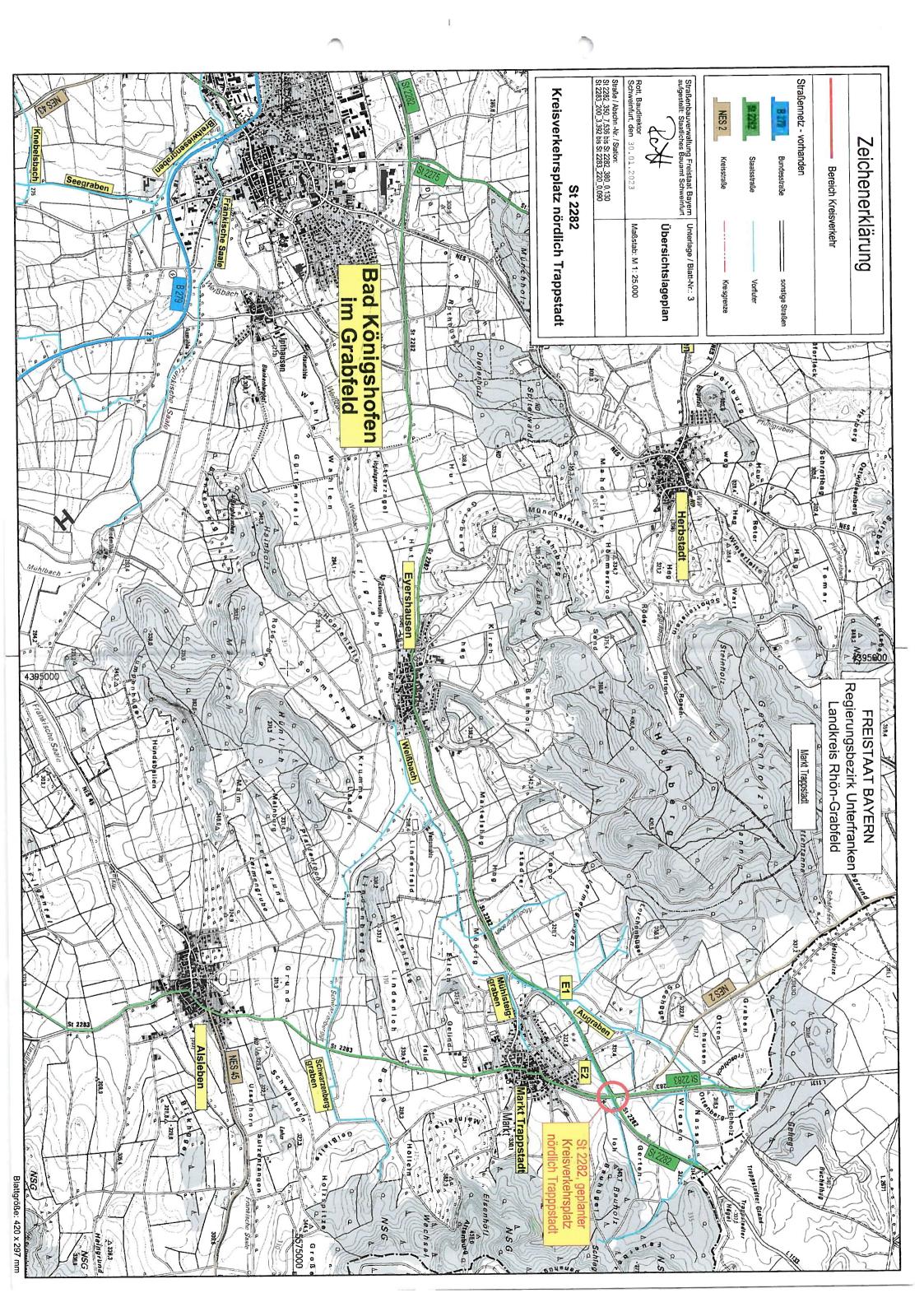
Angeschlossene undurchlässige Flächeohne genaue Flächenermittlung	A_{u}	:	1220	m²	
Abstand Geländeoberkante zum maßgebenden Grundwasserstand	h GW	:	3	m	
mittlere Versickerungsfläche	AS	:	556	m²	
Durchlässigkeitsbeiwert der gesättigten Zone des Untergrundes	k _f	:	1e-5	m/s	
Maximal zulässige Entleerungszeit für n = 1	t E,max	:	24	h	
Zuschlagsfaktor gemäß DWA-A 117	fZ	:	1,20	-	

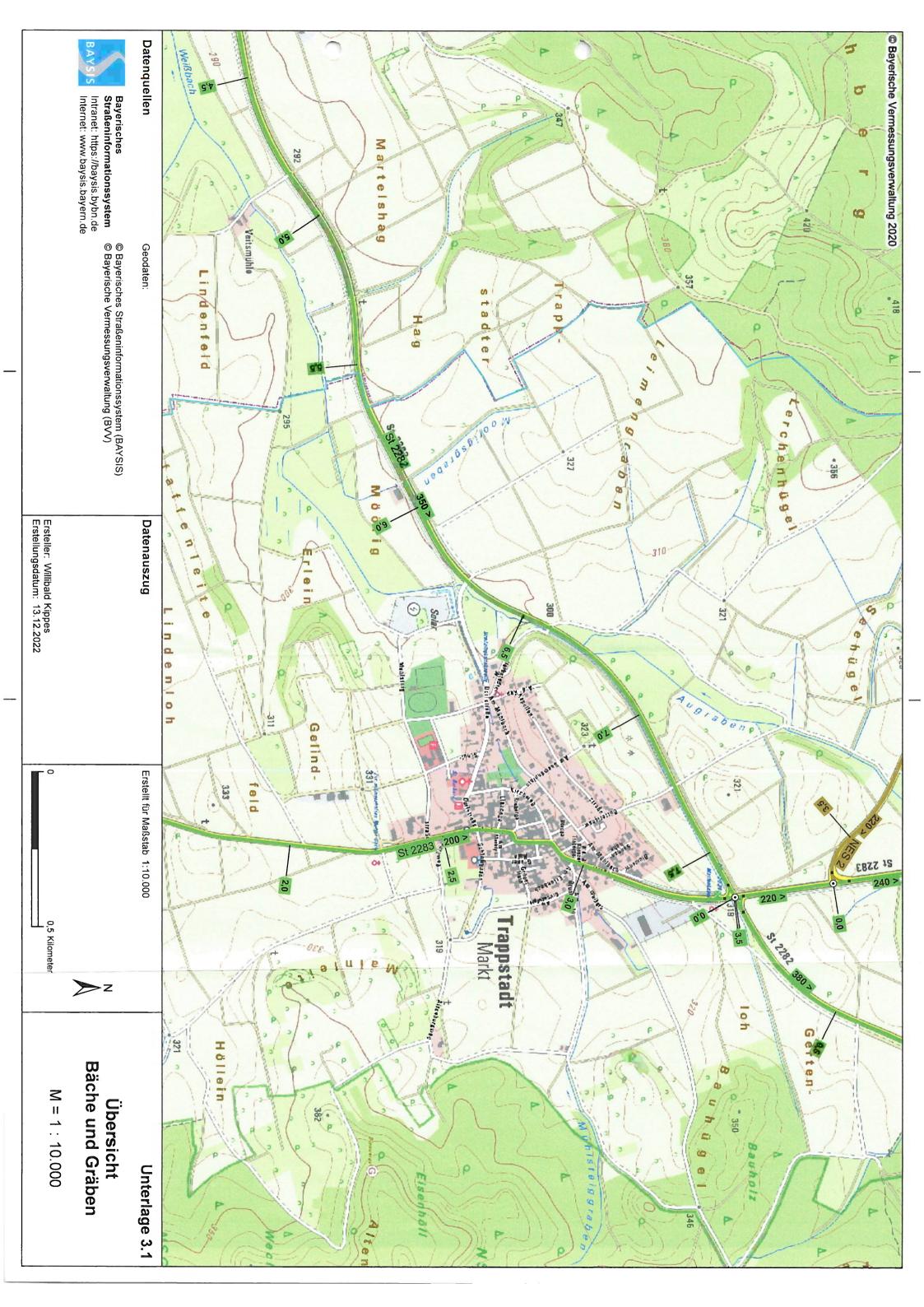
Starkregen nach: aus Datei

DWD Station : RG_Trap	pstad	t T1.st	r	Räumlich interp	oliert?			
Gauß-Krüger Koord. Rechtswert :			m	Hochwert:			m	
Geogr. Koord. östl. Länge:	۰	1	11	nördl. Breite:	0	•	0	
Rasterfeldnr. KOSTRA-DWD-2010R	hor	izontal		vertikal				
Rasterfeldmittelpunkt liegt:								
Überschreitungshäufigkeit				n		:	1	1/a

Berechnungsergebnisse

Muldenvolumen	[™] ∨ _M	:	21,6	m³
Einstauhöhe	z .	. "	0,04	m
Entleerungszeit für n = 1	t _E		2,2	h
Flächenbelastung	A_{u}^{-}/A_{S}	:	2,2	-
Zufluss	Q_{zu}^{-}	: .	11,4	l/s
spezifische Versickerungsrate	٩s	:	22,8	l/(s·ha)
maßgebende Regenspende	r D.n	:	64	l/(s·ha)
maßgebende Regendauer	D_',	:	35	min


Warnungen und Hinweise


Keine vorhanden.

$$\frac{21,6u^{3}}{+72,1u^{3}}$$

$$\frac{93,7u^{3}}{2}$$

$$\frac{100}{4}$$

Anlagen

Anlage 1	Ermittlung der Einzugsflächen und Nachweis der Versickerung
Anlage 2	Qualitativer Nachweis der der Regenwasserbehandlung nach DWA-M 153
Anlage 3	Ermittlung erforderliches Regenrückhaltevolumen nach DWA-A 177
Anlage 4	Nachweis der Erfüllung des erforderlichen Rückhaltevolumens
Anlage 5	Maßgebende Regenspende

Im wasserrechtlichen Verfahren geprüft. AMTLICHER SACHVERSTÄNDIGER	
WASSERWIRTSCHAFTSAMT BAD KISS	INGEN
17. Juni 2025 Engl	

Dieser Plan ist Besta	ndteil der
☐ Bewilligung (§ 8 WHG)	Anlagengenehmigung (§ 36 WHG i.V.m. Art. 20 BayWG)
Erlaubnis (§ 15 WHG / Art. 15 BayWG)	Ausnahmegenehmigung (§ 78 WHG)
Planteststellung (§ 67 WHG)	Rechtsverordnung (§§ 51, 52, 53 Abs. 4 WHG)
Plangenehmigung (§ 67 WHG)	U 4.2.3-641114-
Erteilt mit Bescheid vom	29. Okt 2029, 33-202319
Bad Neustadt a. d. Saal	
den 29. Okt. 2025	septifert-Schreteth

Ermittlung der Einzugsflächen im Gesamtgebiet des Kreisverkehrs und Nachweis der Versickerung

0.00 ~346	G M		623,00			204,90			603,00	Zwischensumme Versickerung	
-0,38 🕢 Versickerung, kein Abfluss	-1,20	-41,3	290	VS4	0,86	36	0,90	108,7	40	Wirtschaftsweg AX_GR4	A4.2
or street all g, well per						43,5	0,30	108,7	145	Erdweg AX_GR4	A4.1
-0.01 6 Versickering kein Abfluss	-1.38	-41,3	333	Vs2	1,36	125,4	0,30	108,7	418	Erdweg AX_GR4	A2
10,97 ~ 1445			556,00			1.220,40			1.330,00		
1/25,04 E2-16 Einleitung in Vorliuter	- KN/T-	71,7	103	0.70.4					1 356 00	Zwischensumme Einleitstelle F2	Zwischen
	1 20	-A1 2	764	V\$16	2.81	258,3	0,90	108,7	287	Kreisverkehr AXE_KV und St 2283 AXE_4	A16
3,44 36 E2-15 Einleitung in Vorfluter	-0,17	-41,3	42	Vs15	3,61	332,1	0,50	108,7	138	Kreisverkehr AXE_KV	A15.2
								100 7	231	St 2283 AXE_4	A15.1
5,82 7,0 E2-14 Einleitung in Vorfluter	-1,03	-41,3	250	VS14	5,85	630	0,50	100,7	77	Einmündung WW	A14.2
							0.00	108 7	623	St 2283 AXE_4	A14.1
_			2.504,00			3.453,30			3.837,00	Zwischensumme Einleitstelle E1	Zwischen
	-0,03	-41,3	8	Vs13	0,10	9	0,90	108,7	10	Geh-,Rad-und Wirtschaftsweg AX_GR2	A13
0.64 / 0 E1-12 Einleitung in Vorfluter	-0,35	-41,3	85	Vs12	0,99	90,9	0,90	108,7	101	Geh-,Rad-und Wirtschaftsweg AX_GR2	A12
0,85 2,0 E1-11 Einleitung in Vorfluter	-0,91	-41,3	220	Vs11	1,76	162	0,90	108,7	180	Gen- und Radweg AX_GR1	ALL
4,65 E1-10 Einleitung in Vorfluter	0,00	-41,3			4,65	427,5	0,90	108,7	475	St 2282 AXE_3	AIO
3,98 8,0 E1-9 Einleitung in Vorfluter	-3,37	-41,3	817	Vs9	7,36	6/6,8	0,90	108,7	/32	Kreisverkehr AXE KV und	
0,26 10 E1-8 Einleitung in Vorfluter	-0,60	-41,3	145	VSV	0,86	73,2	0,90	100,7	757	St 2282 AXF 3	Α9
0,19 0,3 E1-7 Einleitung in Vorfluter	-U,11	-41,0	0.7	V 3/	0,50	70.7	0.00	108 7	88	Geh- und Radweg AX GR1	A8
_	0 11	110	26	Ve7	0.29	27	0,90	108,7	30	Wirtschaftsweg AX_GR3	A7
500	-1 14	-41.3	276	Vs6	2,08	191,7	0,90	108,7	213	Geh-,Rad-und Wirtschaftsweg AX_GR1	A6
50	-1.24	-41,3	301	Vs5	4,33	398,7	0,90	108,7	443	St 2283 AXE_2	A5
200	-0,12	-41,3	29	Vs3.2	3,85	354,6	0,90	108,7	394	Kreisverkehr AXE_KV	A3.2
25	-0,11	41,3+8,7	27	Vs3.1	3,53	324,9	0,90	108,7	361		A3.1
5.3782 E1-1 Einleitung in Vorfluter	-2,35	-41,3	570	Vs1	7,73	711	0,90	108,7	790	St 2282 AXE_1	AL
[1/s]	[1/s]	$qs = 150 + (s \times ha)$	As [m²]	Nr.	[l/s]	Au [m²]	ΨS	[l/s x ha]	[m²]		N.
		B		_	Qr = Au x r				cinzugstiacne		
	Qs=r _(15,n=1) -qs	rate bei				Fläche	beiwert	ľ (15, n=1)	AE,b		
menge Qab	rungsmenge	Versickerungs-	fläche	Ħ.	abfluss	lässige	abfluss-	spende	im Einzugsgebiet		
Restabfluss- Remerkun	Versicke-	spezifische	Versickerungs-	Versic	Oberflächen-	undurch-	Spitzen-	Regen-	befestigte Flache	cilicagoliacile	

Fazit:

Das anfallende Niederschlagswasser versickert nur zum Teil über die anstehenden Böschungen. Aufgrund der Böschungsneigung Neigung von 1:2 und flacher, ist es möglich, die Böschungen mit einer 20 cm mächtigen Oberbodenschicht anzudecken. Darüber erfolgt neben der Versickerung auch die Behandlung des anfallenden Niederschlagswassers. Für die Flächen mit Abfluss wird das erforderlichen Regenrückhaltevolumen ermittelt nach DWA- A 117 (s. Bemessung RRB).

Pab ~ 524s

Stand: 10.12.2022

1.1 - Qualitativer Nachweis Einleitstelle E1 Vorfluter, jedoch teilweise breitflächige Versickerung über Böschungen und Nebenflächen, Rückhaltung in Mulden/ Gräben - Nachweis Einleitung in Grundwasser

Einzugsgebiet EZG Flächen A1, A3, A5 bis A13

Flächentyp	Länge [m]	Breite [m]	Fläche A [m²]	Abfluss- beiwert Ψ	undurchlässige Fläche Au [m²]	Flächen-anteil
Fahrbahn			3.837	0,90	3.453	100%
					0	0%
					0	0%
Summe	0,00		3.837	0,90	3.453	100%

Gewässer	Тур	Gewässerpunkte
Tabelle A.1a		
Grundwasser ausserhalb von Trinkwassereinzugsgebieten		
	G12	G = 10

Flächenanteil f _i (Abschnitt 4)		Luft L _I Tabelle A.2)		Flächen F _I Tabelle A.3)		Abfluss- belastung B
A _{u,i} [m²]	f _i	Тур	Punkte	Тур	Punkte	$Bi = f_i \cdot (L_i + F_i)$
3.453	1,00	L1	1	F4	19	20
3.453	1,00	Abflussbelastung $B = \sum B_i$			20	

Zwischenergebnis:

Gewässerpunkte:

G

10 20

Abflussbelastung:

В

B > G

Aufgrund der Abflussbelastung ist eine Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert		$O_{\text{max}} = 0,50$	
vorgesehene Behandlungsmaßnahm (ATV M153, Tabelle A.4a:)	Тур	Durchgangswerte D _i	
Versickerung durch 20 cm bewachse versickerungsfähiges Material in Bōs Au : As = 3.453 m² : 2.504 m² = 1.38	D2a	= 0,20	
	* ,		
Emissionswert E = B • D =	20 •	0,20	E = 4,00
E = 4,00	G = 10		E < G

Zwischenergebnis:

Emissionswert:

E =

4,00

Gewässerpunkte:

G =

E≤G

Die Behandlung des anfallenden Niederschlagswassers führt zu der

1.2 - Qualitativer Nachweis Einleitstelle E1 Vorfluter, jedoch teilweise breitflächige Versickerung über Böschungen und Nebenflächen, Rückhaltung in Mulden/ Gräben - Nachweis Einleitung in Vorfluter

Einzugsgebiet EZG Flächen A1, A3, A5 bis A13

Flächentyp	Länge [m]	Breite [m]	Fläche A [m²]	Abfluss- beiwert Ψ	undurchlässige Fläche Au [m²]	Flächen-anteil
Fahrbahn	7 30	7 ×	3.837	0,90	3.453	100%
					0	0%
					0	0%
Summe	0,00		3.837	0,90	3.453	100%

Gewässer	Тур	Gewässerpunkte
Tabelle A.1a		
kleiner Flachlandbach (bsp <1 m; v < 0,3 m/s)		
	G6	G = 15

Flächenanteil f _i (Abschnitt 4)		Luft L _i Tabelle A.2)		Flächen F _i Tabelle A.3)		Abfluss- belastung B _i	
A _{u,i} [m²]	f _i	Тур	Punkte	Тур	Punkte	$Bi = f_i \cdot (L_i + F_i)$	
3.453	1,00	L1	1	F4	19	20	
3.453	1,00	Abflussbelastung $B = \sum B_i$			20		

Zwischenergebnis:

Gewässerpunkte:

G

15

Abflussbelastung:

В

20 B > GAufgrund der Abflussbelastung ist eine Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert [O _{max} =	0,75		
vorgesehene Behandlungsmaßnahme	Тур	Durchgan	igswerte D _i		
(ATV M153, Tabelle A.4a:)	1 " 1				
Versickerung durch 20 cm bewachser versickerungsfähiges Material in Bösc	D2a		= 0,20		
Au : As = 3.453 m^2 : 2.504 m^2 = 1.38 :					
Emissionswert E = B • D =	20	•	0,20	E:	= 4,00
E = 4,00	G = 15			E.	< G

Zwischenergebnis:

Emissionswert:

E =

4,00

Gewässerpunkte:

G =

E≤G

15 Die Behandlung des anfallenden Niederschlagswassers führt zu der

2.1 - Qualitativer Nachweis Einleitstelle E2 Vorfluter, jedoch teilweise breitflächige Versickerung über Böschungen und Nebenflächen, Rückhaltung in Mulden/ Gräben - Nachweis Einleitung in Grundwasser

Einzugsgebiet EZG Flächen A14, A15, A16

Flächentyp	Länge [m]	Breite [m]	Fläche A [m²]	Abfluss- beiwert Ψ	undurchlässige Fläche Au [m²]	Flächen-anteil
Fahrbahn	9		1.356	0,90	1.220	100%
					0	0%
					0	0%
Summe	0,00		1.356	0,90	1.220	100%

Gewässer	Тур	Gewässerpunkte
Tabelle A.1a		
Grundwasser ausserhalb von Trinkwassereinzugsgebieten	i	
	G12	G = 10

Flächenanteil fi		Luft L _I Tabelle A.2)		Flächen F _I Tabelle A.3)		Abfluss-
(Abschnitt 4)						belastung B _i
A _{u,i} [m²]	fi	Тур	Punkte	Тур	Punkte	$Bi = f_i \cdot (L_i + F_i)$
1.220	1,00	L1	1	F4	19	20
1.220	1,00	Abflussbelastung $B = \sum B_i$			20	

Zwischenergebnis:

Gewässerpunkte:

G

10

Abflussbelastung:

В

20

B > G

Aufgrund der Abflussbelastung ist eine Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert I		$D_{\text{max}} = 0,50$	
vorgesehene Behandlungsmaßnahm (ATV M153, Tabelle A.4a:)	Тур	Durchgangswerte D _i	
Versickerung durch 20 cm bewachse versickerungsfāhiges Material in Bōsc Au : As = 1.220 m² : 556 m² = 2.19 : 1	D2a	= 0,20	
Emissionswert E = B · D =	20 •	0,20	E = 4,00
E = 4,00	G = 10		E <g< td=""></g<>

Zwischenergebnis:

Emissionswert:

E =

4,00

Gewässerpunkte:

G =

10

E≤G

Die Behandlung des anfallenden Niederschlagswassers führt zu der

2.2 - Qualitativer Nachweis Einleitstelle E2 Vorfluter, jedoch teilweise breitflächige Versickerung über Böschungen und Nebenflächen, Rückhaltung in Mulden/ Gräben - Nachweis Einleitung in Vorfluter

Einzugsgebiet EZG Flächen A14, A15, A16

Flächentyp	Länge [m]	Breite [m]	Fläche A [m²]	Abfluss- beiwert Ψ	undurchlässige Fläche Au [m²]	Flächen-anteil
Fahrbahn			1.356	0,90	1.220	100%
		-			0	0%
					0	0%
Summe	0,00		1.356	0,90	1.220	100%

Gewässer	Тур	Gewässerpunkte	
Tabelle A.1a			
kleiner Flachlandbach (bSp <1 m; v < 0,3 m/s)		,	
	G6	G = 15	

Flächenanteil fi		Lu	ft L _i	Flä	chen F _i	Abfluss-
(Abschnitt 4)		Tabel	le A.2)	Tab	elle A.3)	belastung B _i
A _{u,i} [m²]	f _i	Тур	Punkte	Тур	Punkte	$Bi = f_i \cdot (L_i + F_i)$
1.220	1,00	L1	1	F4	19	20
1.220	1,00		Abflus	sbelastung B =	= ∑ B _i	20

Zwischenergebnis:

Gewässerpunkte:

G

15

Abflussbelastung:

В

20

B > G

Aufgrund der Abflussbelastung ist eine Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert D _m	_{lax} = G / B:		D _{max} =	0,75
vorgesehene Behandlungsmaßnahmen (ATV M153, Tabelle A.4a:)		Тур	Durchga	ngswerte D _i
Versickerung durch 20 cm bewachsene versickerungsfähiges Material in Bösch Au : As = 1.220 m² : 556 m² = 2.19 : 1 <	ung;	D2a		= 0,20
Emissionswert E = B • D =	20 •	0,20	E	= 4,00
E = 4,00	G = 15		E	< G

Zwischenergebnis:

Emissionswert:

E =

4,00

Gewässerpunkte:

G =

15

E ≤ G Die Behandlung des anfallenden Niederschlagswassers führt zu der geforderten Reinigung vor Einleitung in das Grundwasser

Qualitativer Nachweis Einleitstelle E3 - Grundwasser breitflächige Versickerung über Böschungen und Nebenflächen

Einzugsgebiet EZG Bereich Wirtschaftsweg AX_GR4, Flächen A2, A4.1 und A4.2

Flächentyp	Länge [m]	Breite [m]	Fläche A [m²]	Abfluss- beiwert Ψ	undurchlässige Fläche Au [m²]	Flächen-anteil
Erdweg AX_GR4			418	0,30	125	61%
Erdweg AX_GR4			145	0,30	44	21%
Wirtschaftsweg AX_GR4	91		40	0,90	36	18%
Summe	0,00		603	0,34	205	100%

Gewässer	Тур	Gewässerpunkte
Tabelle A.1a		
Grundwasser ausserhalb von Trinkwassereinzugsgebieten		
	G12	G = 10

Flächenanteil f _i		Lu	ıft L _i	Flä	ichen F _I	Abfluss-
(Abschnitt 4)		Tabe	lle A.2)	Tab	elle A.3)	belastung B;
$A_{u,i}$ [m ²]	fi	Тур	Punkte	Тур	Punkte	$Bi = f_i \cdot (L_i + F_i)$
205	1,00	L1	1	F3	12	13
205	1,00		Abflus	sbelastung B =	$= \sum B_i$	13

Zwischenergebnis:

Gewässerpunkte:

G

10

Abflussbelastung:

B B > G

13 Aufgrund der Abflussbelastung ist eine Regenwasserbehandlung erforderlich

maximal zulässiger Durchgangswert [$D_{\text{max}} = G / B$:		D	$O_{\text{max}} = 0.77$
vorgesehene Behandlungsmaßnahme (ATV M153, Tabelle A.4a:)	en		Тур	Durchgangswerte D _i
Versickerung durch 20 cm bewachser versickerungsfähiges Material in Bōsc Au : As = 205 m² : 623 m² = 0,33 : 1 <	hung;	d :	D2a	= 0,20
Emissionswert E = B • D =	13	•	0,20	E = 2,60
E = 2,60	G = 10			E < G

Zwischenergebnis:

Emissionswert:

E = 2,60

10

Gewässerpunkte:

G =

E≤G

Die Behandlung des anfallenden Niederschlagswassers führt zu der

Zusammenfassung des erforderlichen Regenrückhaltevolumens

Friedrith Ae, hal		Einzugsfläche	befestigte Fläche im Einzugsgebiet	Spitzenabfluss- beiwert	undurch- lässige	Drosselabflussspende bezogen auf A _E	Drosselabflussspende q _{Dr,R,U} = {Q _{Dr,k} -Q _t } / A _u	erf. Volumen Regenrückhaltung
V	-				Fläche	Q _{Dr,max} =q _{Dr,k} x A _E	i i	gemäß DWA-A 117
0,079	ž.		A _{E,b} [ha]	0	A _u [ha]	[1/8]	17/11	
V	A1	St 2282 AXE_1	0.079	080	1500		[8/1]	[m³]
V 0,0361 0,990 0,035 0,54 V 0,0394 0,990 0,035 0,59 Antisweg AX_GR1 0,0443 0,990 0,040 0,666 CR3 0,0038 0,990 0,003 0,133 GR3 0,0038 0,990 0,008 0,133 C, GR1 0,0752 0,90 0,008 0,133 L, LAR 0,0475 0,90 0,048 0,13 L, LAR 0,0475 0,90 0,048 0,13 L, LAR 0,0101 0,90 0,016 0,15 L, LAR 0,0101 0,90 0,001 0,015 L, LAR 0,001 0,90 0,001 0,015 L, LAR 0,001 0,90 0,001 0,015 L, LAR 0,002 0,000 0,000 0,015 L, LAR 0,001 0,90 0,001 0,015 0,016 L, LAR 0,002 0,002 0,002 0,002 0,00				Oc'o	1/0,0	1,19	16,667	13,27
Colored No. 1990 0,032 0,554 0,035 0,035 0,559 0,035 0,590 0,035 0,590 0,035 0,590 0,035 0,590 0,040 0,666 0,003 0,003 0,005 0,003 0,005 0,003 0,005 0	A3.1	Kreisverkehr AXF KV	0.0004					
CHAPTERWEE AX_GR1 0,0035 0,0035 0,0035 0,0035 0,0035 0,00343 0,900 0,0040 0,0040 0,0040 0,003 0,	A3.2	Kreisverkehr AXF KV	0,0361	06'0	0,032	0,54	16,667	6.07
Cart		AV TV III VIEW	0,0394	06'0	0,035	0,59	16,667	6.67
c. GR1 0,0443 0,90 0,040 0,666 0,666 challes weg AX_GR1 0,0213 0,90 0,003 0,004 0,001 0,001 0,000 0,001 0,002 0,003 0,00	AS	C+ 2702 AVE 7						
chaftsweg AX_GR1 0,0213 0,990 0,0199 0,32 GR3 0,003 0,990 0,003 0,05 CGR1 0,0088 0,990 0,008 0,13 CGR1 0,0752 0,90 0,068 1,13 Lund 0,0475 0,90 0,043 0,71 CGR1 0,018 0,90 0,016 0,27 Lhaftsweg AX_GR2 0,0101 0,90 0,001 0,02 Laftsweg AX_GR2 0,001 0,90 0,005 0,005 Laftsweg AX_GR2 0,001 0,90 0,005 0,005 Laftsweg AX_GR2 0,001 0,001 0,002 0,001 Laftsweg AX_GR2 0,001 0,001 <	5	31 2263 AAE_2	0,0443	06'0	0,040	99'0	16.667	7.00
CARTA 0,0213 0,900 0,019 0,32 GR3 0,003 0,900 0,003 0,05 CARI 0,008 0,900 0,008 0,13 CARI 0,0752 0,90 0,068 1,13 Lund 0,0475 0,90 0,016 0,71 CARI 0,0101 0,90 0,016 0,27 CARI 0,0101 0,90 0,001 0,15 CARI 0,001 0,90 0,001 0,15 CARI 0,001 0,90 0,001 0,15 Andtsweg AX, GR2 0,001 0,90 0,001 0,02 Andtsweg AX, GR2 0,001 0,90 0,001 0,02 Andtsweg AX, GR2 0,001 0,90 0,001 0,02 Andtsweg AX, GR2 0,001 0,90 0,001 0,001 Andtsweg AX, GR2 0,001 0,90 0,001 0,001 Andtsweg AXE, 4 0,00138 0,90 0,0021 0,037	V							
GR3 0,003 0,900 0,003 0,05 CGR1 0,0088 0,90 0,008 0,13 CGR1 0,0752 0,90 0,068 1,13 Lund 0,0475 0,90 0,043 0,71 CGR1 0,013 0,90 0,016 0,27 CGR1 0,001 0,90 0,001 0,02 CGR1 0,001 0,90 0,001 0,02 CGR2 0,001 0,90 0,001 0,02 CGR3 0,001 0,90 0,001 0,02 And fisweg AX, GR2 0,001 0,90 0,001 0,02 And fisweg AX, GR2 0,001 0,90 0,001 0,02 And fisweg AX, GR2 0,002 0,001 0,002 0,02 And fisweg AX, GR2 0,001 0,002 0,002 0,002 And fisweg AX, GR2 0,002 0,002 0,002 0,002 And fisweg AX, GR2 0,003 0,003 0,002 0,003<	AO	Gen-, Kad-und Wirtschaftsweg AX_GR1	0,0213	06'0	0.019	032	15 553	
CGR1 0,0088 0,90 0,008 0,005 CGR1 0,0752 0,90 0,068 1,13 Lund 0,0475 0,90 0,043 0,71 CGR1 0,0138 0,90 0,016 0,27 CGR1 0,0101 0,90 0,001 0,027 Inhaltsweg AX_GR2 0,001 0,90 0,001 0,022 Inhaltsweg AX_GR2 0,001 0,90 0,001 0,022 Inhaltsweg AX_GR2 0,001 0,90 0,034 5,76 Inhaltsweg AX_GR2 0,007 0,90 0,005 5,76 Inhaltsweg AX_GR2 0,007 0,007 0,007 0,007 Inhaltsweg AX_GR2 0,001 0,007 0,007 0,007 Inhaltsweg AX_GR2 0,001	A7	Wirtschaftsweg AX_GR3	0,003	0.90	0,003	2000	16,66/	3,58
Lund 0,0752 0,990 0,068 1,13 Lund 0,0475 0,90 0,043 0,71 CGR1 0,018 0,90 0,016 0,27 Inaftsweg AX_GR2 0,0101 0,90 0,005 0,15 Inaftsweg AX_GR2 0,001 0,90 0,005 0,15 Inaftsweg AX_GR2 0,001 0,90 0,007 0,022 Inaftsweg AX_GR2 0,001 0,002 0,002 0,002 Inaftsweg AX_GR2 0,001 0,002 0,002 0,002 Inaftsweg AX_GR2 0,001 0,002 0,002 0,002 Inaftsweg AX_GR2 0,0023 0,003 0,003 0,003 Inaftsweg AX_GR2 0,00287 0,90 0,002 0,013 Inaftsweg AX_CA2 0,002 0,00 0,00 0,012 0,043	A8	Geh- und Radweg AX GR1	0.0088	0 0	5000	Su'n	16,667	0,50
und 0,0752 0,90 0,068 1,13 und 0,0475 0,90 0,043 0,71 GR1 0,018 0,90 0,016 0,27 cGR1 0,0101 0,90 0,006 0,15 thaftsweg AX_GR2 0,0101 0,90 0,001 0,02 thaftsweg AX_GR2 0,001 0,90 0,002 0,116 0,0077 0,007 0,90 0,007 0,347 thaftst 2283 AXE_4 0,0287 0,90 0,0026 0,43				Octo	2000	0,13	16,667	1,48
Lund 0,0475 0,90 0,043 1,13 Lund 0,0475 0,90 0,043 0,71 Laftsweg AX_GR2 0,0101 0,90 0,016 0,27 Inaftsweg AX_GR2 0,001 0,90 0,001 0,02 Inaftsweg AX_GR2 0,001 0,90 0,02 0,02 Inaftsweg AX_GR2 0,002 0,02 0,02 0,02 Inaftsweg AX_GR2 0,002 0,09 0,007 0,116 0,03 Inaftsweg AX_GR2 0,007 0,007 0,007 0,116 0,03 Inaftsweg AX_GR2 0,007 0,007 0,007 0,043 0,043	A9	St 2282 AXE 3	0.0753	000	0000			
Lond 0,0475 0,90 0,043 0,71 CGR1 0,018 0,90 0,016 0,27 chaftsweg AX_GR2 0,0101 0,90 0,003 0,15 chaftsweg AX_GR2 0,001 0,90 0,001 0,027 chaftsweg AX_GR2 0,001 0,90 0,002 0,027 chaftsweg AX_GR2 0,0623 0,90 0,056 0,035 chaftsweg AX_GR2 0,007 0,007 0,116 0,0347 chaftsweg AX_GR2 0,023 0,007 0,012 0,0347 chaftsweg AX_GR2 0,0287 0,090 0,0026 0,043			70.000	06'0	0,068	1,13	16,667	12,64
CGR1 0,0475 0,90 0,043 0,71 CGR1 0,018 0,90 0,016 0,27 chaftsweg AX_GR2 0,0101 0,90 0,003 0,15 thaftsweg AX_GR2 0,001 0,90 0,001 0,027 thaftsweg AX_GR2 0,001 0,90 0,002 0,02 thaftsweg AX_GR2 0,0623 0,90 0,056 0,035 0,035 thaftsweg AX_GR2 0,0024 0,0024 0,032 0,032 0,0347 0,0347 thaftsweg AX_CR2 0,0287 0,990 0,0026 0,043 0,043 0,043		Kreisverkehr AXF KV und						
Geh- und Radweg AX_GR1 0,018 0,90 0,016 0,27 Geh-,Rad-und Wirtschaftsweg AX_GR2 0,0101 0,90 0,009 0,015 Isumme Einleitstelle E1 0,03837 0,90 0,001 0,022 St 2283 AXE_4 0,0623 0,90 0,056 0,935 Einmündung WW 0,0077 0,090 0,007 0,116 St 2283 AXE_4 0,0231 0,90 0,012 0,347 Kreisverkehr AXE_KV 0,0138 0,021 0,021 0,347 Kreisverkehr AXE_KV und St 2283 AXE_4 0,0287 0,90 0,002 0,025 St 2283 AXE_4 0,0287 0,90 0,012 0,037 0,03	A10	St 2282 AXE 3	0,0475	06'0	0,043	0,71	16,667	7.98
Haftsweg AX_GR2	A11	Geh- und Radweg AX_GR1	0,018	06'0	0.016	70.0	40.00	
haftsweg AX_GR2	A12	Geh-, Rad-und Wirtschaftsweg AX_GR2	0,0101	06.0	6000	0.27	16,66/	3,02
1 0,3837 0,90 0,024 0,02 0,0623 0,007 0,090 0,056 0,935 0,007 0,007 0,007 0,116 0,116 und St 2283 AXE 4 0,0287 0,90 0,0026 0,43	A13	Geh-, Rad-und Wirtschaftsweg AX GR2	0,001	060	0,000	0,13	16,667	1,70
0,0623 0,90 0,056 0,935 0,916 0,0077 0,007 0,90 0,016 0,116 0,0231 0,90 0,021 0,347 0,347 und St 2283 AXE 4 0,0287 0,90 0,0026 0,43	Zwischen	summe Einleitstelle E1	0 3837	080	100,0	0,02	16,667	0,17
0,0623 0,90 0,056 0,935 0,0077 0,007 0,007 0,116 0,0231 0,90 0,021 0,347 und St 2283 AXE_4 0,0287 0,90 0,026 0,43			(cock)	06,0	0,345	5,76	16,667	64,47
und St 2283 AXE_4 0,0254 0,990 0,026 0,035 0,035 0,016 0,016 0,0116 0,021 0,347 0,020 0,207 0,207 0,207 0,207 0,026 0,433 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 <td>A14.1</td> <td>St 2283 AXE 4</td> <td>0.0633</td> <td></td> <td></td> <td></td> <td></td> <td></td>	A14.1	St 2283 AXE 4	0.0633					
und St 2283 AXE_4 0,0277 0,900 0,026 0,026 0,028 0,020 0,026 0,437 0,207 0,207 0,207 0,026 0,433 0,043 0,90 0,026 0,43 0,044 0,044	A14.2	Finminding W/W	5,0020	06'0	0,056	0,935	16,667	
U,0231 0,90 0,021 0,347 0,0138 0,012 0,207 und St 2283 AXE_4 0,0287 0,90 0,026 0,43	A15.1	C+ 2282 AVE A	1/000		0,007	0,116	16,667	11,/6
und St 2283 AXE_4 0,0287 0,90 0,026 0,43 0,1356 0,43	445	4 30 ZZOJ WYL 4	0,0231	06.0	0,021	0,347	16,667	
und St 2283 AXE_4 0,0287 0,90 0,026 0,43	AIS.2	Kreisverkenr AXE_KV	0,0138		0,012	0,207	16,667	6,20
01356	Alb	Kreisverkehr AXE_KV und St 2283 AXE_4	0,0287	06'0	0,026	0,43	16.667	407
0,122 0,122 2.03	wischen	summe Einleistelle E2	0,1356	06'0	0,122	2.03	16.667	70,4

Bemessungsgundlagen:

-Trockenwetterabfluss - Drosselabflussspende

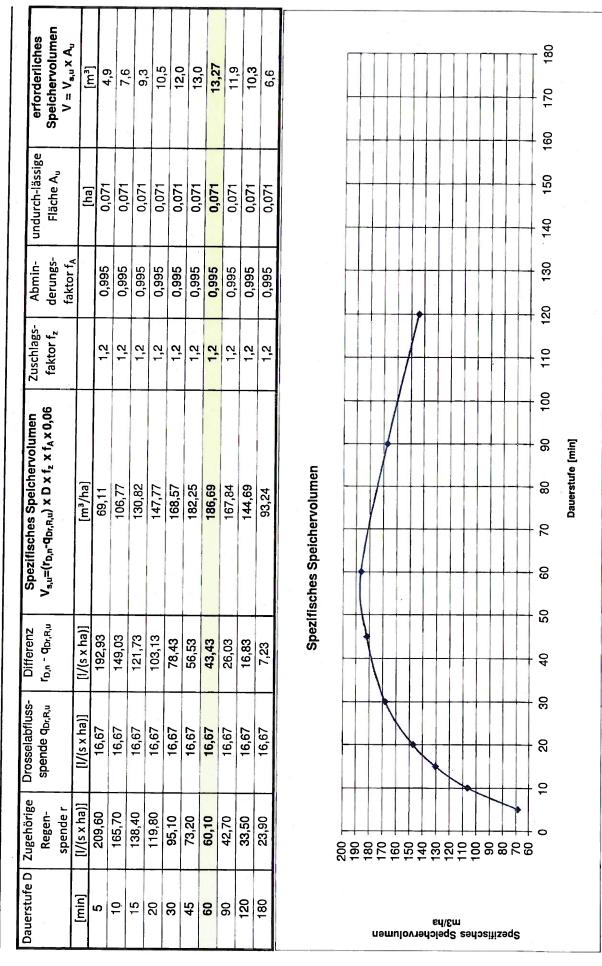
 Überschreitungshäufigkeiten - Fließzeit

- Zuschlagsfaktor, geringes Risiko

0,00 l/s 15,00 l/(s xha) 0,5/a 5 min 1,20 O_{T,d} = 90.k Oor,k n = t = f₂ = 1

--> DWA M153, Punkt 6.3.1 kleiner Flachlandbach

Seite 1 von 16

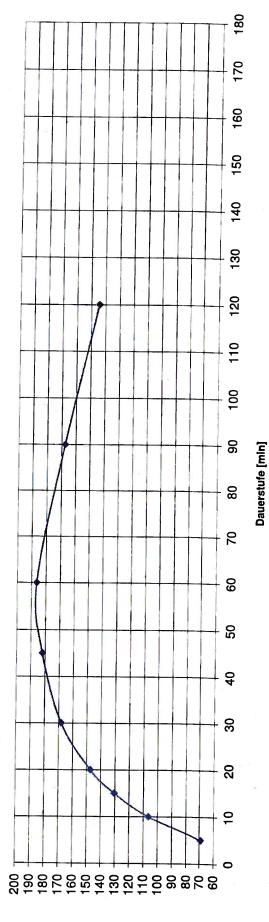

Stand: 10.12.2022

Seite 2 von 16

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5

-
Z Z
282
St 228;
5
Q Q
EZG ،
ereich
_
2

Einleitstelle E 1


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB

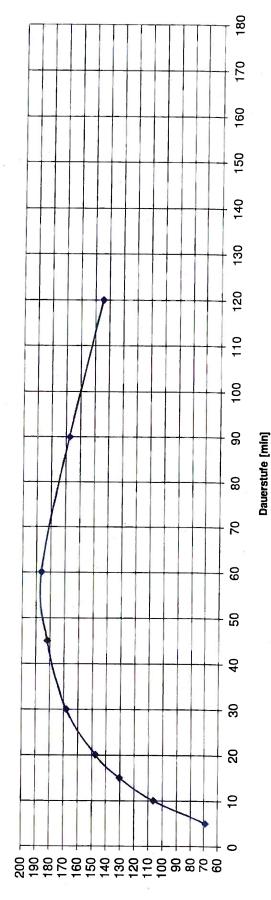
Bereich EZG A3.1 - Kreisverkehr

Einleitstelle E 1

erforderlickon	Speichervolumen	$V = V_{s,u} \times A_u$	[3]	[m]	2,2	ອີ່ນ	1.0	٥,'+	4,8	נו	C'C	5,9	6,07	. נו	ָהָ הַלְּהָ	4,7	3,0
undurch-lässige	Fläche Au		[ha]	[m.1]	0,032	0,032	0.032	20010	0,032	0.032	200,0	0,032	0,032	0.032	200,0	0,032	0,032
Abmin-	derungs-	faktor f _A		0 00	0,990	0,995	0.995	2000	0,990	0.995	0 995	0,000	0,995	0.995	0.005	0,990	0,995
Zuschlags-	faktor f ₂			1.0	i d	7,1	1,2	1.0	7,1	1,2	12	1	1,2	1,2	1.0	1	1,2
Spezifisches Speichervolumen	$V_{s,u}=(r_{D,n}-q_{Dr,R,u}) \times D \times f_z \times f_A \times 0,06$		[m³/ha]	69.11	106 77	7,100	130,82	147.77		168,57	182,25	00 00 1	60,001	167,84	144.69	7000	93,24
Differenz	ro,n - qor,R,u	11 11 - 11	[l/(s x na)]	192,93	149.03	707	121,/3	103,13	70.40	70,43	56,53	43.43	24.04	26,03	16,83	7.93	۲,,
Drosselabfluss-	spende q _{Dr,R,u}	11/10 12 12 11	[(b) x c)/i]	16,67	16,67	10.67	/0,01	16,67	16.67	/oʻ01	16,67	16.67	1007	/0,01	16,67	16.67	0.01
Zugehörige	Regen- spende r	[/(c v ha)]	[/011 \ c\ /1]	209,60	165,70	138.40	OF.	119,80	95 10	21,00	73,20	60.10	70 70	42,70	33,50	23.90	201
Dauerstufe D Zugehörige		[min]		ဌ	10	7.	2	20	30	3	45	09	Co	8	120	180	

Spezifisches Speichervolumen m3/ha

Seite 4 von 16


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB Bereich EZG A3.2 - Kreisverkehr Einleitstelle E 1

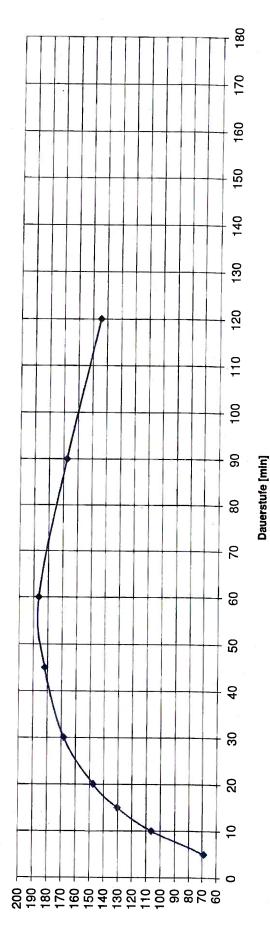
reisverkehr
Y
2
8
EZG'
eich
3erei
ш

Einleitstelle E 1

Dallerstufe D	Dallerstufe D Zugebörige	Drosselahfluse.	Difforonz					
	248cmonge	spende a	חוופופוול		Zuschlags-	Abmin-	undurch-lässige	erforderliches
	-uagay	appropriate dor, R, u	'D,n - YDr,R,u	$V_{s,u}=(V_{D,n}-q_{Dr,R,u})\times D\times t_z\times t_A\times 0,06$	faktor f _z	derungs-	Fläche A.,	Speichervolumen
	spende r					faktor f.	3	V = V× A.
[min]	[l/(s x ha)]	[[/(s x ha)]	[(s x ha)]	[m³/ha]		Α	,	n n's
۲.	209 60	18.87	0000	[m./]			[ha]	[m ₃]
> :	200,000	10,01	192,93	69,11	1,2	0,995	0.035	25
10	165,70	16,67	149,03	106,77	1.2	0.995	0.035	o i
15	138,40	16,67	121,73	130.82	10	2000	0,000	0,0
S	440 00	10.01	07.007		7,1	0,000	0,035	4,6
20	00,811	/9,01	103,13	147,77	1,2	0.995	0.035	n On
တ္တ	95,10	16,67	78,43	168.57	10	0.005	2000	2,0
45	73.20	16.67	EC 50	10 007	2(1	0,530	0,035	0'9
2	0,50	0,0	20,00	182,25	1,2	0,995	0,035	6,5
09	60,10	16,67	43,43	186,69	1,2	0,995	0.035	6.63
06	42,70	16,67	26,03	167,84	1.2	0 995	0.035	200
120	33,50	16.67	16.83	144.60		2000	Conto	O,O
700	0000	1000	2015	60544	7,1	0,995	0,035	5,1
190	23,90	16,67	7,23	93,24	1,2	0,995	0,035	3.3

Spezifisches Speichervolumen

Spezifisches Speichervolumen m3/ha

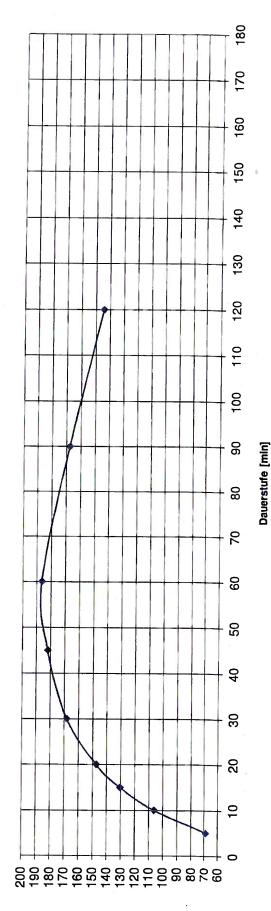

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB

Bereich EZG A5 - St 2283 - AXE_2

Einleitstelle E 1

ufe D	Dauerstufe D Zugehörige	Drosselabfluss-	Differenz	Specification Special				
	Regen-	spende q _{Dr.B.U}		V=(rn) × D × + × + × 0.06	Zuschlags-	Abmin-	undurch-lässige	erforderliches
	spende r			8,u-(.u,n 4b;,k,u/ ~ 5 ^ 12 ^ 14 0,00	faktor f ₂	derungs-	Fläche A _u	Speichervolumen
[min]	[[/s x ha]]	[[/[c x ha]]	[[/c v b-)]	1. 2. 2. 1.		faktor f _A		$V = V_{s,u} \times A_u$
	(2000	101 0 0 101	[//2 × 114]]	[m²/na]	NI S		[ha]	[m³]
	209,60	16,67	192,93	69,11	1,2	0.995	0.040	000
	165,70	16,67	149,03	106.77	12	0 005	0,040	2,0
	138,40	16.67	121.73	130.80	ī	500.0	0,040	£,4
	119.80	18.87	0 7 00	20,00	7,1	0,995	0,040	5,2
Ť	00,01	70,01	103,13	14/,//	1,2	0,995	0,040	5.9
	95,10	16,67	78,43	168,57	1,2	0.995	0.040	6.7
	73,20	16,67	56,53	182,25	1.2	0.995	0.040	7.0
	60,10	16,67	43,43	186.69	61	0 005	0,040	5,7
	42.70	16.67	26.03	167.84	1 0	0,000	0,040	7,44
	22 50	10.01	0000	to, 501	ν,	0,885	0,040	6,7
	02,50	/9'0	16,83	144,69	1,2	0,995	0,040	80,
	23,90	16,67	7,23	93,24	1,2	0,995	0,040	3.7
								: ()

Spezifisches Speichervolumen m3/ha


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5

Bereich EZG A6 - Wirtschaftsweg

Einleitstelle E 1

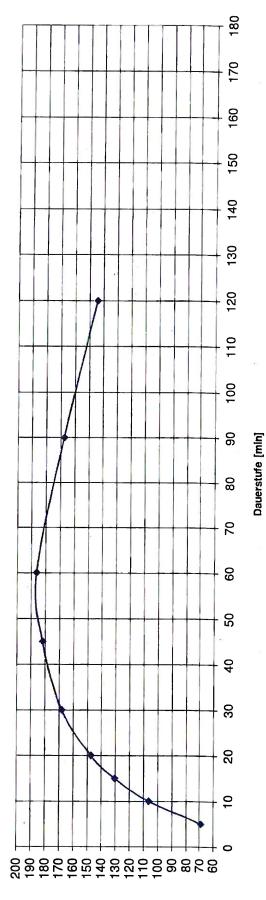
	_		_	T	_			-			_	_	_	T	_	_	_	_
	erforderliches	Speichervolumen	$V = V_{s,u} \times A_u$	3	[m²]	დ,	CC	0,2	2,5	80		3,2	5.5	2 50	00.0	2,5	2,8	8.7
	undurch-lässige	Fläche A _u		[ka]	Lilaj	910,0	0.019	0,00	6,0,0	0.019	0.00	610,0	0,019	0.019	0100	6100	0,019	0,019
	Abmin-	derungs-	faktor f _A		200	0,990	0.995	0 995	0,000	0.995	0 005	0,930	0,995	0.995	0 995	0000	0,995	0,995
	Zuschlags-	faktor f _z			4.5	2,1	1.2	12	1	1,2	1.0	7:-	1,2	1.2	10		2,1	1,2
Shorlfleshop Spointering		*s,u-('D,n-4Dr,R,u/ A D A 12 A 1A X U,U0		[m³/ha]	69 11		106,77	130.82		147,77	168.57		182,25	186,69	167.84	144.60	80°++1	93,24
Differenz		מיעייסר וויס		[[/(s x ha)]	192,93	00 07 7	149,03	121,73	07.007	103,13	78,43	27.07	56,53	43,43	26,03	16.83	000	7,23
Drosselabfluss-	spende dn. B.			[[/(s x ha)]	16,67	10 01	10,01	16,67	1007	10,07	16,67	10.01	10,01	16,67	16,67	16.67		16,67
Zugehörige	Regen-	spender	ייייייייייייייייייייייייייייייייייייייי	[l/(s x ha)]	209,60	105 70	02,70	138,40	110 00	19,00	95,10	72.20	7 3,20	60,10	42,70	33.50	2000	23,90
Dauerstufe D Zugehörige				[mɪn]	S	7	2	15	00	20	90	45	2	09	06	120	007	180

Spezifisches Speichervolumen

Spezifisches Speichervolumen m3/ha

Seite 6 von 16

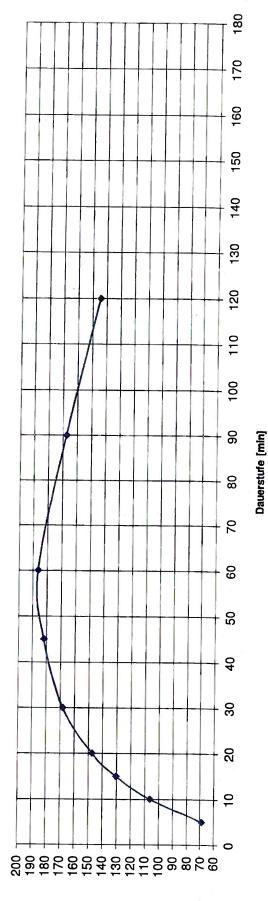
Seite 7 von 16


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5

Bereich EZG A7 - Wirtschaftsweg

Einleitstelle E 1

	_	_	_	_	1	_		_	1	-	F		
erforderliches Speichervolumen	$V = V_{s,u} \times A_{u}$	[m³]	0.0	200	2,0	4,0	0,4	50	2,0	0.50	ر د د	2,0	0,3
undurch-lässige Fläche A _u		[ha]	0,0027	0.0027	0.0027	0,0027	0,0027	0.0027	0.0027	0.0027	0.0027	0.0027	0,0027
Abmin- derungs-	faktor f _A		0,995	0.995	0 995	Socio	0,995	0,995	0,995	0,995	0,995	0,995	0,995
Zuschlags- faktor f _z			1,2	1.2	1.2		1,2	1,2	1,2	1,2	1,2	1,2	1,2
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[3 /L-1	[m-/na]	69,11	106,77	130,82		14/,//	168,57	182,25	186,69	167,84	144,69	93,24
Differenz ^r b,n ⁻ qbr,R,u	11/6 × 5/1	[(0) (0)	192,93	149,03	121,73	400	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss- spende q _{or,R,u}	[[/c v ha]]	(b) (S) (1)	/9'91	16,67	16,67	16.67	10,01	16,67	16,67	16,67	16,67	16,67	16,67
Zugehörige Regen-	[[/(s.x.ha)]	7/2000	209,60	165,70	138,40	110 80	2,00	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D Zugehörige Regen-	[min]	4	C	10	15	20	3	30	45	<mark>09</mark>	06	120	180

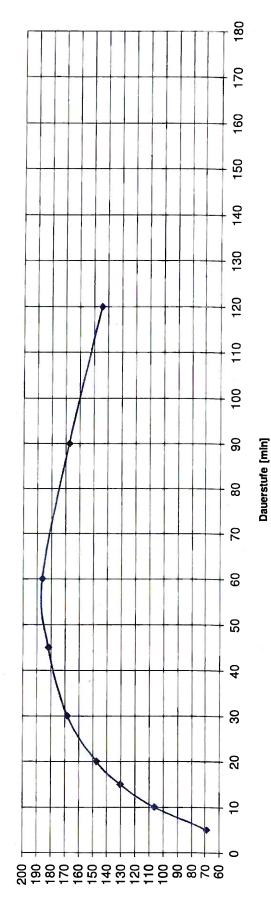

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB Bereich EZG A8 - Geh- und Radweg Einleitstelle F 1

Bereich EZG A8 - Geh- und Radweg

•	
Ш	
<u>o</u>	
ē	
ซ	
등	
ĕ	
Ī	
_	ı
	ı

Dauerstufe D	Dauerstufe D Zugehörige	Drosselahfluse-	Differenz					
	291101197	spende d.		Spezilisches Speichervolumen	Zuschlags-	Abmin-	undurch-lässige	erforderliches
	-uagay	dorse dorse	'D,n ' dDr,R,u	$V_{s,u}=(V_{D,n}-q_{Dr,R,u})\times D\times f_z\times f_A\times 0,06$	faktor f ₂	derungs-	Fläche A	Speichervolumen
	spende r		11			faktor f		× > - >
[min]	[[/(s x ha)]	[[/(s x ha)]	[[/(s x ha)]	[m³/h₂]		I DIVE		n v n's ,
LC.	200 60	10.07	70007	[111 / 118]			[ha]	[m ₃]
	200,000	10,01	192,93	69,11	1.2	0 995	8000	
10	165,70	16,67	149,03	106.77	1,0	0,000	0,000	c,u
15	138 40	16.67	107		2,1	0,330	800'0	8,0
2	0t,00	10,01	121,/3	130,82	1,2	0.995	8000	7
50	119,80	16,67	103.13	147 77	C	1000	2000	0,1
00	0.1	1007		11,11	7,1	0,885	800,0	1,2
000	93,10	/9'91	/8,43	168,57	1.2	0 995	0.00	
45	73,20	16,67	56,53	182.25	1.0	0000	000,0	5,1
90	60.10	16.67	A2 A2	30 007	7.	0,933	0,008	4,1
	21.52	0.0	40,40	186,69	7,7	0,995	0,008	1.48
06	42,70	16,67	26,03	167,84	1.2	0 995	8000	
120	33,50	16,67	16.83	144.69	i c	2000	0,000	5,1
180	22.00	40.67	100		7,1	0,885	0,008	r. T
000	20,50	10,07	7,23	93,24	1,2	0,995	0,008	7.0

Spezifisches Speichervolumen


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB Bereich EZG A9 - St 2282 AXE_3 Einleitstelle E 1

က	
Щ	
AXE 3	
Ñ	
- St 2282	i
\ddot{z}	
יט	
9	
(7)	
EZG A9	ı
100	I
2	ı
Bereich	
ğ	ı
	I
	ı

-
Ш
9
=
0

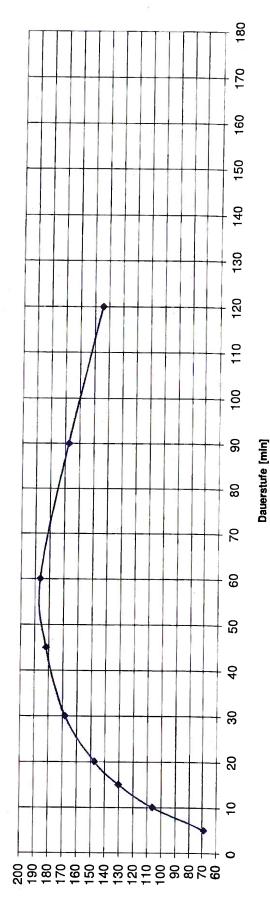
7
=
ē
_
2
=
Ш

erforderliches Speichervolumen	$V = V_{s,u} \times A_u$	4.7	7.2	0.80	10.0	11.4	12.3	12.64	11.4	8.6	6,3
undurch-lässige Fläche A _u	[64]	0.068	0.068	0.068	0.068	0.068	0,068	0,068	0,068	0,068	0,068
Abmin- derungs-	faktor f _A	0,995	0,995	0,995	0,995	0.995	0,995	0,995	0,995	0,995	0,995
Zuschlags- faktor f _z		1,2	1,2	1,2	1,2	1,2	1,2	1,2	5,1	1,2	1,2
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[m³/ha]	69,11	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24
Differenz r _{D,n} - q _{Dr,R,u}	[[/(s x ha)]	192,93	149,03	121,73	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss- spende q _{br,R,u}	[l/(s x ha)]	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67
Zugehörige Regen-	[[/(s x ha)]	209,60	165,70	138,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D Zugehörige Regen-	[min]	5	10	15	20	30	45	09	06	120	180

Spezifisches Speichervolumen

Seite 9 von 16

Seite 10 von 16

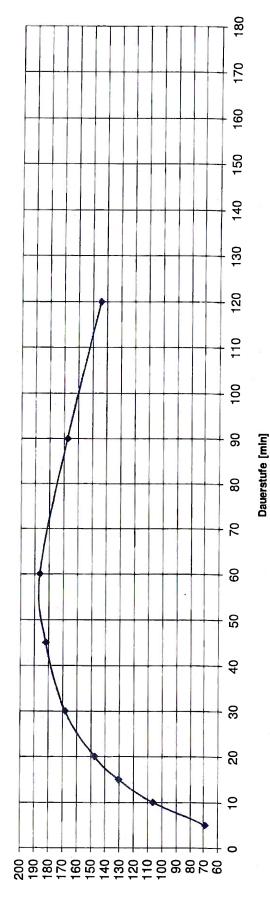

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5

Bereich EZG A10 - Kreisverkehr und St 2282 AXE_3

Einleitstelle E 1

Dauerstufe D	Dauerstufe D 7119ehörige	Drosselahfluse-	Differenz	0 - 10 10 10 10 10 10 10 1				
	Regen-	spende dn. B	Zurelenz Zn Ch. p.	Spezifisches Speichervolumen	Zuschlags-	Abmin-	undurch-lässige	erforderliches
	spender	ביי היים היים	מ'א'מר יים.	*s,u=('D,n=4Dr,R,u) * D * I ₂ * I _A * U,U6	faktor f _z	derungs-	Fläche A _u	Speichervolumen
[min]	[[/c x ha]]	11//6 15-11	2			faktor f _A		$V = V_{s,u} \times A_u$
	[//s x d/]	[/(s x na)]	[/(s x ha)]	[m³/ha]			[ha]	31
5	209,60	16,67	192,93	69.11	10	0 005	[118]	[am]
10	165,70	16,67	149,03	106.77	1 0	2000	0,040	3,0
15	138.40	16.67	121 73	00 00+	2,,	0,990	0,043	4,6
50	0001	1007	0/17	130,82	1,2	0,995	0,043	5,6
22	00'611	/9,01	103,13	147,77	1.2	0.995	0.043	C
30	95,10	16,67	78,43	168.57	1.0	2000	0,00	0,0
45	73.20	16.67	56 50	1000	7,1	0,990	0,043	7,2
00	0100	0,01	00,00	182,25	1,2	0,995	0,043	7,8
00	01,00	16,67	43,43	186,69	1,2	0.995	0.043	7.08
90	42,70	16,67	26,03	167.84	1.0	0.005	0.00	06,1
120	33,50	16,67	16.83	144.69	1 0	2000	0,043	7,7
180	23.90	16.67	7 23	2000	7,1	0,995	0,043	6,2
	oolo	10.01	62,1	93,24	1,2	0,995	0,043	4,0

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5


Bereich EZG A11 - Geh- und Radweg

RRB

Einleitstelle E 1

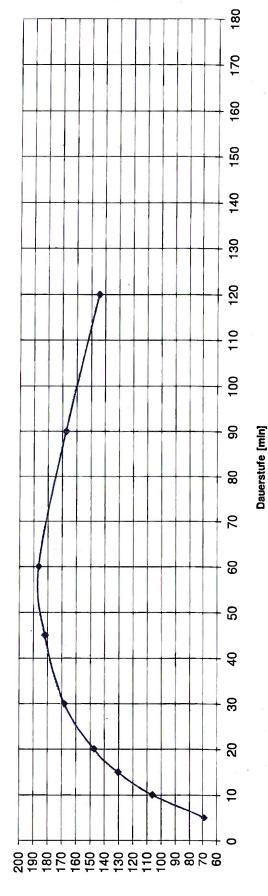
spende q _{Dr,R,U} r _{D,n} - q _{Dr,R,U} V _{s,u} =(r _{D,n} -q _{Dr,R,U})x Dx f _x x f _x x 0,06 faktor f _x Fläche A _U factor f _x faktor f _x faktor f _x faktor f _x Fläche A _U factor f _x faktor f _x faktor f _x faktor f _x Fläche A _U factor f _x faktor f _x faktor f _x faktor f _x Fläche A _U factor	Ľ	Dauerstufe D Zugehörige	Drosselabfluss-	Differenz	Spezifisches Speicherzolumen	7. Josephann			
[I/(s x ha)] [I/(s x ha)] [m³/ha] faktor f _A [ha] 16,67 192,93 69,11 1,2 0,995 0,016 16,67 149,03 106,77 1,2 0,995 0,016 16,67 121,73 130,82 1,2 0,995 0,016 16,67 78,43 168,57 1,2 0,995 0,016 16,67 78,43 186,69 1,2 0,995 0,016 16,67 43,43 186,69 1,2 0,995 0,016 16,67 26,03 167,84 1,2 0,995 0,016 16,67 26,03 144,69 1,2 0,995 0,016 16,67 7,23 93,24 1,2 0,995 0,016	Regen-		spende q _{Dr,R,u}	ro,n - qor,n,u	$V_{s,u}=(r_{D,n}-q_{D,R,u}) \times D \times f_z \times f_A \times 0,06$	zuschlags- faktor f.	derings-	undurch-lässige Fläche A	erforderliches Speichervolumen
[I/(s x ha)] [Im³/ha] [m³/ha] 16,67 192,93 69,11 1,2 0,995 16,67 149,03 106,77 1,2 0,995 16,67 121,73 130,82 1,2 0,995 16,67 78,43 168,57 1,2 0,995 16,67 56,53 182,25 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 26,03 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	spende	٢				7	faktor f.	חר ט	V = V _e x A
16,67 192,93 69,11 1,2 0,995 16,67 121,73 106,77 1,2 0,995 16,67 121,73 130,82 1,2 0,995 16,67 78,43 168,57 1,2 0,995 16,67 56,53 182,25 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 26,03 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	[1/(s×h	la)]	[l/(s x ha)]	[l/(s x ha)]	[m³/ha]		₹	[ha]	n'e n'e
16,67 149,03 106,77 1,2 0,995 16,67 121,73 130,82 1,2 0,995 16,67 103,13 147,77 1,2 0,995 16,67 78,43 168,57 1,2 0,995 16,67 43,43 186,69 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	209,	20	16,67	192,93	69,11	1.2	0.995	0.016	[*
16,67 121,73 130,82 1,2 0,995 16,67 78,43 147,77 1,2 0,995 16,67 78,43 168,57 1,2 0,995 16,67 56,53 182,25 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	165,	2	16,67	149,03	106,77	1,2	0,995	0.016	1.1
16,67 103,13 147,77 1,2 0,995 16,67 78,43 168,57 1,2 0,995 16,67 56,53 182,25 1,2 0,995 16,67 43,43 186,69 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 7,23 93,24 1,2 0,995	138	6,	16,67	121,73	130,82	1,2	0,995	0.016	21
16,67 78,43 168,57 1,2 0,995 16,67 56,53 182,25 1,2 0,995 16,67 43,43 186,69 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 7,23 93,24 1,2 0,995	119	98,	16,67	103,13	147,77	1,2	0.995	0.016	2.4
16,67 56,53 182,25 1,2 0,995 16,67 43,43 186,69 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	95,	9	16,67	78,43	168,57	1,2	0,995	0.016	2.7
16,67 43,43 186,69 1,2 0,995 16,67 26,03 167,84 1,2 0,995 16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	73,	20	16,67	56,53	182,25	1,2	0,995	0,016	3.0
16,67 26,03 167,84 1,2 0,995 16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	60,	우	16,67	43,43	186,69	1,2	0,995	0,016	3.02
16,67 16,83 144,69 1,2 0,995 16,67 7,23 93,24 1,2 0,995	42,	20	16,67	26,03	167,84	1,2	0,995	0.016	27
16,67 7,23 93,24 1.2 0.995	33,	50	16,67	16,83	144,69	1,2	0,995	0.016	2.0
	23	.06	16,67	7,23	93,24	1,2	0,995	0,016	- - -

Spezifisches Speichervolumen

Spezifisches Speichervolumen m3/ha

Seite 11 von 16

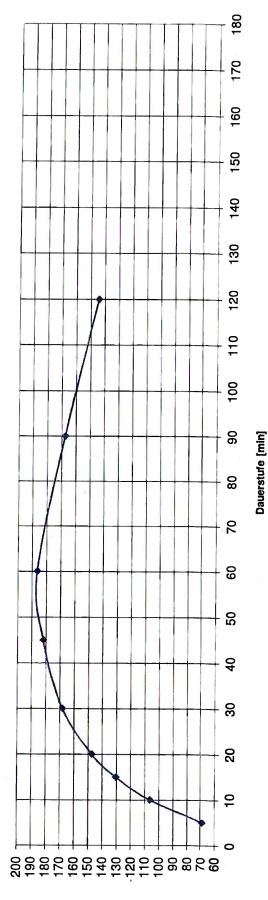
Seite 12 von 16


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB Bereich EZG A12 - Geh- Rad-und Wirtschaftsweg

Bereich EZG A12 - Geh- Rad-und Wirtschaftsweg

Einleitstelle E 1

	_	$\overline{}$	_		_	_		_	_	7	
erforderliches Speichervolumen	$V = V_{s,u} \times A_u$	0.6	1.0	1.2	6.	5 1	1.7	1,70	1,5	1,3	0,8
undurch-lässige Fläche A _u	[ha]	600'0	600'0	600'0	600'0	600'0	600'0	0,009	600'0	600'0	600'0
Abmin- derungs-	faktor f _A	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995
Zuschlags- faktor f _z	v	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[m³/ha]	69,11	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24
Differenz ^r o,n - qor,n,u	[l/(s x ha)]	192,93	149,03	121,73	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss- spende q _{br,R,u}	[l/(s x ha)]	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67
Zugehörige Regen-	[[/(s x ha)]	209,60	165,70	138,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D Zugehörige Regen-	[min]	2	10	15	20	30	45	09	06	120	180

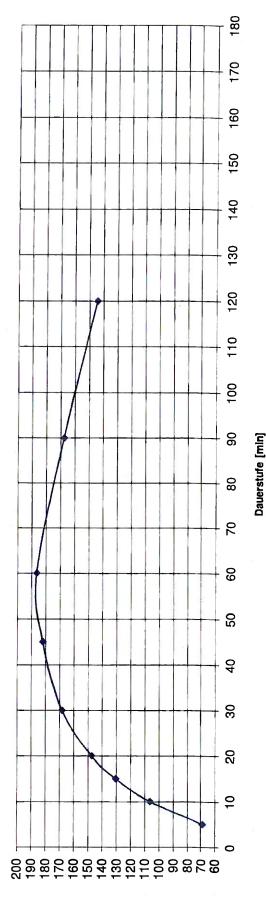

Seite 13 von 16

Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB

Bereich EZG A13 - Geh- Rad-und Wirtschaftsweg

Einleitstelle E 1

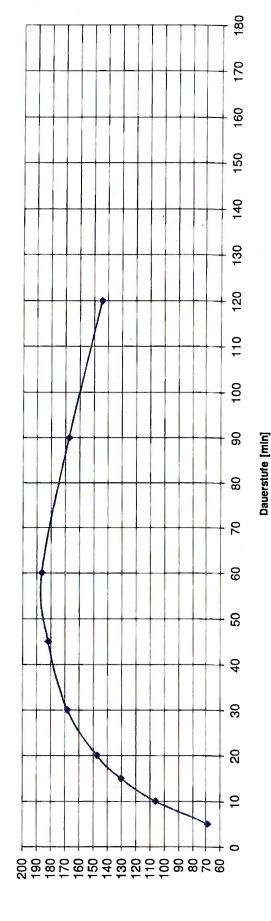
	T						١,			T		T									· · ·
erforderliches Speichervolumen	ny vn's - A	[m²]	0,1	0,1	0.1	0.1	0.0	210	0.168	200	2,5										
undurch-lässige Fläche A _u	- 1	[na]	0,001	0,001	0,001	0.001	0,001	0.001	0.001	0.001	0 001	0,001									
Abmin- derungs-	I AKLOL IA		0,995	0,995	0,995	0,995	0,995	0,995	0,995	0.995	0.995	0,995									
Zuschlags- faktor f _z		,	2,1	1,2	1,2	1,2	1,2	1,2	1,2	<u>+</u>	1.2	1,2									
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[m³/ha]	60.11	11,80	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24	Spezifisches Spelchervolumen								
Differenz ^r o,n - qor,R,u	[[/(s x ha)]	102 03	140.00	149,03	121,/3	103,13	78,43	56,53	43,43	26,03	16,83	7,23	Spezif								
Drosselabfluss- spende q _{Dr,R,u}	[l/(s x ha)]	16.67	16.67	10,07	/9'01	16,67	16,67	16,67	16,67	16,67	16,67	16,67									
Zugehörige Regen- spende r	[l/(s x ha)]	209.60	165.70	120,70	130,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90	200	170	160	150	130	120	100	06	08
Dauerstufe D	[min]	2	10	ō ŭ	2 8	20	30	45	90	06	120	180		uəu	unjo	erv.	eich ha	/Sm	səų	osif	įzəd


Seite 14 von 16

Einleitstelle E 2 Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB Bereich EZG A14 - St 2283 AXE_4 und Einmündung Wirtschaftsweg

sweg	
haftsw	
tsct	
ĭ,	
lung	
ünc	
E	
Ш	
Ĕ	
AXE_4	
AX	
Bereich EZG A14 - St 2283 AXE 4 und Einmür	
- St 2	
4	
۷ 5	
5	
ere	
מֿ	

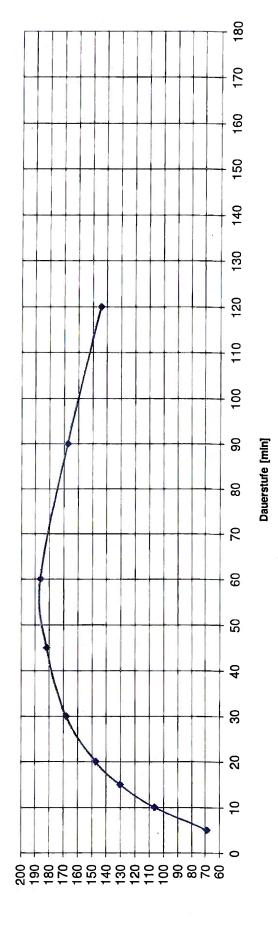
	Т	\top	_	1			1	T	_	_	
erforderliches Speichervolumen	V = Vs,u X Au	44	4,4	2,83	8.60	10.6	11.5	11.76	10.6	9.1	5,9
undurch-lässige Fläche A _u	[64]	0.063	0.063	0,063	0.063	0.063	0,063	0,063	0,063	0,063	0,063
Abmin- derungs-	taktor t _A	0.995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995
Zuschlags- faktor f _z		1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[m³/ha]	69,11	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24
Differenz ro,n - qor,n,u	[l/(s x ha)]	192,93	149,03	121,73	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss- spende q _{or,R,u}	[]/(s x ha)]	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67
Zugehörige Regen- spender	[l/(s x ha)]	209,60	165,70	138,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D Zugehörige Regen- spende r	[min]	2	10	15	20	30	45	09	06	120	180


Ermittlung des spezifischen Speichervolumens und des Rückhaltevolumens für n=0,5 RRB

Bereich EZG A15 - Keisverkehr und St 2283 AXE_4

	_	
	c	4
- 1	u	ı
	۵	s
1		•
	9	?
	Ü	5
-	=	:
	0	2
	c	:
i	7	i
•	-	,
		ì
		ı

		-	T	Т	_		1	_	_		_	_	_
erforderliches	Speichervolumen	$V = V_{s,u} \times A_u$	[m ₃]	23	3.5	4.3	4.9	5.6	6.1	6.20	5,6	4.8	3,1
undurch-lässige	Fläche A,		[ha]	0.033	0,033	0,033	0,033	0,033	0,033	0,033	0,033	0,033	0,033
Abmin-	derungs-	faktor f _A		0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995
Zuschlags-	faktor f _z			1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Spezifisches Speichervolumen	$V_{s,u}=(r_{D,n}-q_{Dr,R,u})\times D\times f_z\times f_A\times 0.06$		[m³/ha]	69,11	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24
Differenz	ľo,n - Gor,R,u		[l/(s x ha)]	192,93	149,03	121,73	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss-	spende q _{or,R,u}		[l/(s x ha)]	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67
Zugehörige	Regen-	spende r	[l/(s x ha)]	209,60	165,70	138,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D Zugehörige			[min]	5	9	15	20	30	45	<mark>09</mark>	06	120	180



und des Rückhaltevolumens für n=0,5 Einleitstelle E 2 Ermittlung des spezifischen Speichervolumens RRB Bereich EZG A16 - Kreisverkehr

	des spezinschen Speichervolumens und des Kuckhalte
RB	Bereich EZG A16 - Kreisverkehr

		-	_		_	_	_	_		-	_	_
erforderliches Speichervolumen	$V = V_{s,u} \times A_u$	[m²]	1,8	2,8	3,4	3,8	4,4	4,7	4,82	4,3	3,7	2,4
undurch-lässige Fläche A _u	1.5	[na]	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
Abmin- derungs-	faktor f _A		0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995	0,995
Zuschlags- faktor f _z			1,2	2,1	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
Spezifisches Speichervolumen V _{s,u} =(r _{D,n} -q _{Dr,R,u}) x D x f _z x f _A x 0,06	[cd/Em]	[m. / ma]	69,11	106,77	130,82	147,77	168,57	182,25	186,69	167,84	144,69	93,24
Differenz ^r o,n ⁻ qor, a, u	[[kd x s]/]]	(b) wall	192,93	149,03	121,73	103,13	78,43	56,53	43,43	26,03	16,83	7,23
Drosselabfluss- spende q _{Dr,R,U}	[/(s x ha)]	70.01	79'91	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67	16,67
Dauerstufe D Zugehörige Regen-	[[(s x ha)]	0000	203,60	165,70	138,40	119,80	95,10	73,20	60,10	42,70	33,50	23,90
Dauerstufe D	[min]		o :	10	15	20	30	45	09	06	120	180

Spezifisches Speichervolumen

Seite 16 von 16

St 2282, Kreisverkehrsplatz nördlich Trappstadt

Nachweis der Erfüllung des erforderlichen Rückhaltevolumens in den geplanten Gräben / Muden Einleitstelle E1 nördlich der St 2282 Richtung Bad Königshofen

Zeile	Nachweis	Bereich Achse	von Station	hie Ctation	1					
	gemäß Seiten				orabenvolumen vorhanden [m³]	Einzugsflache Nummer	Rückhalte- volumen erforderlich [m³]	Bedarf (-) Überschuss [m³]	Nachweis Volumen erbracht	Bedarf (-) Überschuss [m³]
	Graben/ Mulde s. Seite 2	AXE_1 links	0+048,900	0+147,000	38,00	A1 A3.1	13,30	18,60	ë	Überschuss für Flächen
	Graben/ Mulde s. Seite 3	AX_GR4 rechts	0+115,847	0+202,090	27,00	A3.2 A5	6,60	12 80		A5, A7, A8, A9 keine weitere Verwendung für
	Graben/ Mulde s. Seite 4	AX_GR3 rechts	0+092,380	0+119,683	2,50	A6 A7	3,60	200	p	Uberschussvolumen Ableitung in Graben AXE_1 links
	Graben/ Mulde s. Seite 4	AX_GR3 links	0+080,351	0+095,355	00'0	A8	1,50	00,1-	e.	S. Zeile 1, Restvolumen 17,0 m³ Ableitung in Graben AXE_1 links
	Graben/ Mulde s. Seite 5	AX_GR1 Nordseite	0+090,493	0+115,789	09'6	A10	8,00	1,60	e e	s. Zeile 1, Restvolumen 2,80 m³ keine weitere Verwendung für
	Graben/ Mulde s. Seite 6	AX_GR1 Südseite links	0+003,061	0+065,45	12,60	A11	3,00	09'6	eí	Uberschussvolumen keine weitere Verwendung für
	Graben/ Mulde s. Seite 7	AX_GR2 links	0+000,345	0+023,695	2,00	A12	1,70	0,30	eť	Voerschussvolumen keine weitere Verwendung für
1										Operschussvolumen

Einleitstelle E2 südlich der St 2282 Richtung Bad Königshofen

Bedarf (-) Überschuss [m³]	Überschuss sind Reserve für evtl. Einschlämmen im Zuge der Nutzung
Nachweis Volumen erbracht	ēĹ
Bedarf (-) Überschuss [m³]	4,00
Rückhalte- volumen erforderlich [m³]	23,00
Einzugsfläche Nummer	A14 A15 A16
Grabenvolumen vorhanden [m³]	00'22
bis Station	0+147,000
von Station	0+130,000
Bereich Achse	AXE_1 rechts AXE_4 links
Nachweis gemäß Seiten	Graben/ Mulde s. Seite 8
Spalte	∞

St 2282, KVP Trappstadt

Starkregen nach :

Gauß-Krüger Koord.

Gauß-Krüger Koordinaten

Rechtswert:

4338552 m

DWD Station: KOSTRA-DWD-2010R

5577638 m

Hochwert:

1/a

.. _

HH.

[/(s·ha) r-, 991

Dauer des Bemessungsregens

Überschreitungshäufigkeit

maßgebende Regenspende 1_{D.n}

r_{15, n=1} = 108,7 I/s*ha)