

INGENIEURBÜRO HOSSFELD & FISCHER BERATENDE INGENIEURE

Gemeinde Sulzfeld im Grabfeld

Baugebiet Langfeld
Antrag auf beschränkte Erlaubnis zur Einleitung
von Niederschlagswasser in die Barget

- Wasserrechtliches Genehmigungsverfahren -

Berechnungen

Im wasserrechtlichen Verfahren geprüft.

AMTLICHER SACHVERSTÄNDIGER

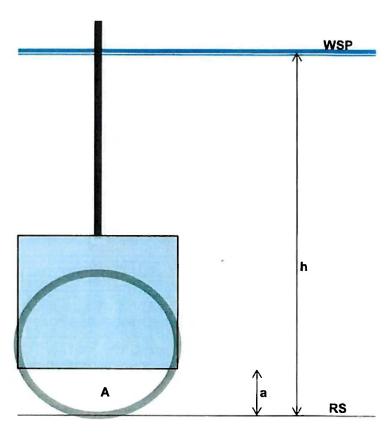
WASSERWIRTSCHAFTSAMT BAD KISSINGEN

1 8. Sep. 2025 Markus Schlereth

Datum Name

Projekt-Nr.: 169 2874 Bad Kissingen, 12.08.2024

W 155 - Programm	des Bayerischen La	ndesamtes für Um	welt				Version 01/2010
Ingenieurbüro Hoss	feld & Fischer - 9768	8 Bad Kissingen - v	www.Hunc	lF.de			
		Qualitative G	ewässert	elastung			
Projekt: Neubean	tragung Wasserrech	t BG Langfeld					Datum: 26.07.2024
Gewässer (Anhang	A, Tabelle A.1a un	d A.1b)				Тур	Gewässerpunkte G
Barget						G 5	G = 18
Flächenanteile f _i (Ka	ap. 4)		Luft L _i (Tab. A.2)	Fläch	en F _i (Tab. A.3)	Abflussbelastung B
Flächen	A _u in ha	f _i n. Gl.(4.2)	Тур	Punkte	Тур	Punkte	$B_i = f_i \cdot (L_i + F_i)$
Schrägdach	0,66	0,408	L 1	1	F 2	8	3,67
Hoffläche	0,318	0,197	L1	1	F 2	8	1,77
Gartenfläche	0,206	0,127	L 1	1	F 1	5	0,76
Wohnstraße	0,433	0,268	L1	1	F 4	19	5,36
			L		F		
			L		F		
	$\Sigma = 1,616$	Σ = 1		Abfluss	belastun	g B = Summe (B _i) :	B = 11,56
maximal zulässiger D	Ourchgangswert D _{ma}	_{ex} = G/B				·	D _{max} =
vorgesehene Beha	ndlungsmaßnahme	n (Tabellen: A.4a,	A.4b und	A.4c)		Тур	Durchgangswerte D
						D	
						D	,
						D	
		Durchga	ngswert D	= Produkt	aller D; (siehe Kap 6.2.2) :	D=
					Emissi	onswert E= B · D	E =
keine Regenwasse	rbehandlung erforde	rlich, da B = 11,56	<= G = 18				


hen Landes	amtes f	ür Um	welt		Vers	ion 01/2	010
r - 97688 Bad	d Kissing	gen - v	vww.HundF.de				
Hydraulis	che Ge	wäss	erbelastung				
Vasserrecht l	3G Lang	gfeld			Datum :	26.07	2024
.08	m l	bekan	nter Mittelwass	erabfluss MQ :		0,02	m³/s m³/s m³/s
Art der Befestigung A _{E,k} in ha				Ψ_{m}	A _u ir	n ha	
Ziegel, Dachpappe				0,733	0,9		0,66
Pflaster mit offenen Fugen 0,5			0,530	0,6		0,318	
flaches Gelände 2,				2,056	0,1		0,206
Asphalt, fugenloser Beton 0,			0,481	0,9		0,433	
				Σ = 3,8		Σ=	1,616
					3.2		
30 48	l/(s⋅ l/s	ha)				3 60	- 1/s
Speichervolu	mens is	t QDr	= 48 l/s			100	
Speichervolu	mens is	t QDr	= 48 l/s				
	Hydraulis Vasserrecht I ,5 ,08 ,5 Art de Ziegel, Dack Pflaster mit of flaches Gelä Asphalt, fuge 1 30 48	Hydraulische Ge Vasserrecht BG Lang ,5 m ,08 m ,5 m/s Art der Befer Ziegel, Dachpappe Pflaster mit offenen flaches Gelände Asphalt, fugenloser	Hydraulische Gewäss Vasserrecht BG Langfeld "5 m errech "08 m bekan "5 m/s 1-jährl Art der Befestigun Ziegel, Dachpappe Pflaster mit offenen Fugen flaches Gelände Asphalt, fugenloser Beton 1 30 l/(s·ha) 48 l/s	,5 m errechneter Mittelwass ,08 m bekannter Mittelwass ,5 m/s 1-jährlicher Hochwas Art der Befestigung Ziegel, Dachpappe Pflaster mit offenen Fugen flaches Gelände Asphalt, fugenloser Beton	Hydraulische Gewässerbelastung Vasserrecht BG Langfeld	Hydraulische Gewässerbelastung Vasserrecht BG Langfeld Datum: .5 m errechneter Mittelwasserabfluss MQ: .08 m bekannter Mittelwasserabfluss MQ: .5 m/s 1-jährlicher Hochwasserabfluss HQ1: Art der Befestigung A _{E,k} in ha Ψ _m Ziegel, Dachpappe 0,733 0,9 Pflaster mit offenen Fugen 0,530 0,6 flaches Gelände 2,056 0,1 Asphalt, fugenloser Beton 0,481 0,9	Hydraulische Gewässerbelastung Vasserrecht BG Langfeld Datum: 26.07. .5 m errechneter Mittelwasserabfluss MQ:, 5 m/s 1-jährlicher Hochwasserabfluss MQ:, 5 m/s 1-jährlicher Hochwasserabfluss HQ1: 0,02 Art der Befestigung AE k in ha Ψm Au in Au

(

Gemeinde Suizfeld Neubeantragung Wasserrecht Baugebiet Langfeld

Unvollkommener Ausfluss unter Schütz (Krelsrohr mit Rechteckschütz)

WSP o	295,65 m+NN	
WSP u	294,60 m+NN	
RS	294,60 m+NN	
h o	1,05 m	
h u	0,00 m	
DN	300 mm	
а	0,09 m	
h_o/a	12,1	
h_u/a	0,0	
С	1,00 Diagramn	1
r	0,15 m	
Α	0,0170 m2	
b= A/a	0,20 m	
μ	0,620	
Q	48 l/s	

Bemessung Drosselblende

Rohrdurchmesser max. Stauhöhe ü. So

hoffen

Drosselfläche A_D

Schwerpunktsabstand e

Qmin

Qmax

Drosselabfluss

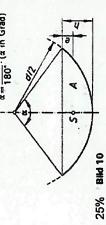
1,09 m 0,300 m 0,090 m

2,3186

0,0178 m²

0,037 m

9,11/s 48,3 l/s


28,7 I/s

1.3 Kreisabschnitt
$$\alpha = 1$$

Vergleichsberechung ww.A-

Sulzfeld, RRB Baugebiet-Langfeld

Bogenlänge *b,* Bogenhöhe *h,* Sehnen-länge s, Schwerpunktslage e, Fläche A, Öffnungswinkel α (Bogenmaß)

$$\alpha = 4 \cdot \arcsin \sqrt{\frac{h}{\sigma}} = 2 \cdot \arctan \frac{s}{d - 2h}$$

$$h = \frac{d}{2} \cdot \left(1 - \cos \frac{\alpha}{2}\right) = \frac{1}{2} \cdot \left(d - \sqrt{d^2 - s^2}\right)$$

$$\alpha = \frac{\pi}{180^{\circ}} \cdot (a \text{ in Grad}) \quad s = d \cdot \sin \frac{\alpha}{2} = 2 \cdot \gamma / h \cdot (d - h)$$

$$b = \frac{d}{2} \cdot \alpha = d \cdot 2 \cdot \arcsin \left| \frac{h}{d} \right|$$

$$b = \frac{d}{2} \cdot \alpha = d \cdot 2 \cdot \arcsin \left| \frac{h}{d} \right|$$

$$e = \frac{d}{2} \cdot \left(\frac{4}{3} \cdot \frac{\sin^3 \frac{\alpha}{2}}{\alpha - \sin \alpha} - \cos \frac{\alpha}{2} \right) = \frac{s^3}{12A} - \frac{d}{2}$$

$$e = \frac{d}{2} \cdot \left(\frac{4}{3} \cdot \frac{\sin^3 \frac{\alpha}{2}}{\alpha - \sin \alpha} - \cos \frac{\alpha}{2} \right) = \frac{s^3}{12A} - \frac{d}{2} \cdot \cos \frac{\alpha}{2}$$

$$A = \frac{d^3}{8} \cdot (\alpha - \sin \alpha) = \frac{d}{4} \cdot (b - s) + \frac{s \cdot h}{2}$$

0,6*A_D*S[2*g*(Stauhöhe-h+e)]

(Q_{min}+Q_{max})/2

Abflußbemessung Version 1.7 Softwarelösungen Hucke & Pülz - www.hucke-puelz.de

Neubeantragung Wasserrecht BG Langfeld

Projektnummer:

156 2874

Haltungsnummer:

Drosselleitung RÜB 7

Gesucht: Teilfüllungswerte bei gegebener Rohrfüllhöhe h(teil):

v		<u>.</u>	_		£:	١.
n	re	IS	D	ro	ш	

Kreisprofil:					
Durchmesser DN		d	[mm]	=	300
Vollfüllungswerte:					
Durchfluss Querschnittsfläche Fließgeschwindigkeit Hydraulischer Radius Reynoldszahl Schleppspannung Widerstandsbeiwert		Q A v rhyd Re τ λ	[l/s] [m²] [m/s] [m] [N/m²]	= = = = =	100,773 0,0707 1,4257 0,075 326485 7,784 0,03064
Teilfüllungswerte:					
Durchfluss Füllhöhe Querschnittsfläche Fließgeschwindigkeit Hydraulischer Radius Reynoldszahl Schleppspannung Widerstandsbeiwert Froudezahl		Q h A v rhyd Re τ λ Fr	[l/s] [mm] [m²] [m/s] [m] [N/m²]	= = = = = = = = = = = = = = = = = = = =	20,054 90 0,0178 1,1241 0,0513 176033 5,323 0,03458 1,41
Betriebswerte:					
Energieliniengefälle Betriebsrauheit kinematische Viskositäi Rohdichte	t	le kb ν ρ	[‰] [mm] [m²/s] [kg/m³]	= = = =	10,58 1,5 0,00000131 1000
Grenzwerte für Q(teil):	(Froude-Zahl = 1	1)			
Grenzabflußwinkel Abflußquerschnittsfläch Grenzgeschwindigkeit Grenztiefe minimale Energiehöhe	e	φ Agr vgr hgr hEmin	[rad] [m²] [m/s] [mm] [m]	= = = = =	2,5669 0,0228 0,881 107,5 0,147

Erstellt am 06.08.2024 von Hoßfeld & Fischer

A117 - Programm des Bayerischen Landesamtes für Umwelt

Version 01/2018

Ingenieurbüro Hossfeld & Fischer - 97688 Bad Kissingen - www.HundF.de

Projekt:

Sulzfeld BG Langfeld

Becken: RRB 7 Datum: 26.07.2024

Bemessungsgrundlagen

undurchlässige Fläche Au. (nach Flächenermittlung)

Fließzeit tf:..... Überschreitungshäufigkeit n: 1,61 ha

15 min

0,2 1/a

Trockenwetterabfluß QT,d,aM Drosselabfluss Q_{Dr} : . . .

34 l/s

Zuschlagsfaktor fz: 1,2 -

RRR erhält Drosselabfluss aus vorgelagerten Entlastungsanlagen (RRR, RÜB oder RÜ)

Summe der Drosselabflüsse Q_{Dr.v}:

RRR erhält Entlastungsabfluss aus RÜB oder RÜ (RRR ohne eigenes Einzugsgebiet)

Drosselabfluss Q_{Dr.RÜB} :

Volumen V_{RÜB}:.....

 m^3

Starkregen

Starkregen nach: Gauß-Krüger Koord. Rechtswert : . . . Geogr. Koord. östliche Länge:...

Rasterfeldnr. KOSTRA Atlas horizontal Rasterfeldmittelpunkt liegt:

aus Datei

vertikal

KOSTRA-DWD-2020.str Hochwert:.....

nördliche Breite: .

Räumlich interpoliert?...

Berechnungsergebnisse

maßgebende Dauerstufe D: 45 min Regenspende r_{D,n} :.... Drosselabflussspende q_{Dr,R,u} Abminderungsfaktor f_A

89 l/(s·ha) 20,81 l/(s·ha) 0,955 -

Entleerungsdauer t_E :.... Spezifisches Volumen V_s:...

2,8 h 210,9 m³/ha

erf. Gesamtvolumen Vges: ... erf. Rückhaltevolumen V_{RRR}:

340 m³ 340 m³

Warnungen

- keine vorhanden -

Siehe Vergleichsberechnung WWA

Dauerstufe D	Niederschlags- höhe [mm]	Regen- spende [l/(s·ha)]	spez. Speicher- volumen [m³/ha]	Rückhalte- volumen [m³]
5'	11,1	368,5	119,6	193
10'	15,1	251,2	158,5	255
15'	17,6	195,5	180,3	290
20'	19,4	161,4	193,5	311
30'	21,8	121,0	206,8	333
45'	24,0	89,0	210,9	340
60'	25,5	70,9	206,6	333
90'	28,0	51,9	192,7	310
2h = 120'	30,0	41,6	171,9	277
3h = 180'	33,0	30,5	120,2	193
4h = 240'	35,2	24,5	60,5	97
6h = 360'	38,7	17,9	0,0	0

C:\Users\Schoen\Documents\Berechnungen\Gemeinde Sulzfeld\BG Langfeld.rrr

Vergleichsberechnung WWA

A117 - Programm des Bayerischen Landesamtes für Umwelt

Wasserwirtschaftsverwaltung

Version 01/2018

Projekt:

Sulzfeld, Baugebiet-Langfeld

Becken: RRB

RRB- BG-Langfeld

Datum: 18.09.2025

Bemessungsgrundlagen

undurchlässige Fläche Au:	1,61	ha	Trockenwetterabfluß Q _{T,d,aM} :.		I/s
(keine Flächenermittlung)			Drosselabfluss Q _{Dr} :	29	I/s
Fließzeit tf:	10	min	Zuschlagsfaktor fZ:	1,2	-
Überschreitungshäufigkeit n:	0,2	1/a			

RRR erhält Drosselabfluss aus vorgelagerten Entlastungsanlagen (RRR, RÜB oder RÜ)

Summe der Drosselabflüsse Q_{Dr.v}:

RRR erhält Entlastungsabfluss aus RÜB oder RÜ (RRR ohne eigenes Einzugsgebiet)

Drosselabfluss Q_{Dr,RÜB} : //s Volumen V_{RÜB} : m³

I/s

Starkregen

Starkregen nach:	aus	Da	itei	Datei: .Suklzfeld_BG Langf	eld_T	5.str	
Gauß-Krüger Koord. Rechtswert :	59976	9	m	Hochwert:	5568	3344	m
Geogr. Koord. östliche Länge:	0 1		II .	nördliche Breite: . °	1	- 11	
Rasterfeldnr. KOSTRA Atlas horizonta	1 1	ver	tikal	Räumlich interpoliert?			
Rasterfeldmittelpunkt liegt:							

Berechnungsergebnisse

Derceimangacigebinase			
maßgebende Dauerstufe D:	55 min	Entleerungsdauer tr :	3,2 h
Regenspende r _{D,n} :	71,3 I/(s·ha	a) Spezifisches Volumen V _S :	207,2 m³/ha
Drosselabflussspende q _{Dr.R.u} :	18,01 I/(s·ha	erf. Gesamtvolumen V _{ges} :	334 m³
Abminderungsfaktor f _A :	0,983 -	erf. Rückhaltevolumen V _{RRR} :	334 m³

Warnungen

- keine vorhanden -

Dauerstufe	Niederschlags-	Regen-	spez. Speicher-	Rückhalte-
D	höhe	spende	volumen	volumen
	[mm]	[l/(s·ha)]	[m³/ha]	[m³]
5'	11,3	376,2	126,7	204
10'	14,6	243,1	159,3	256
15'	16,6	184,2	176,4	284
20'	18,0	150,2	187,1	301
30'	20,1	111,9	199,3	321
45'	22,4	82,8	206,3	332
60'	24,0	66,7	206,8	333
90'	26,5	49,1	197,7	318
2h = 120'	28,4	39,4	181,6	292
3h = 180'	31,2	28,9	138,4	223
4h = 240'	33,3	23,1	87,2	140
6h = 360'	36,6	16,9	0,0	0

Regenwasserbehandlung

Bewertungsverfahren

Emissionsbezogene Bewertung und Auslegung von Regenwasserbehandlungsanlagen von FRÄNKISCHE nach DWA-A 102-2/BWK-A 3-2 für die Einleitung von Niederschlagswasser aus Siedlungsgebieten in Oberflächengewässer. Grundlage sind Regenreihen der Stadt Mühldorf am Inn, aus den Jahren 1961 bis 2006 *

Anlage 1

Grundlagendaten

Flächenaufstellung

Flächenbezeichnung	Teilfläche A _{b,a,i} [m²]	Flächengruppe (Kurzzeichen)	Belastungskategorie I, II, III	Flächenspez. Stoffabtrag B _{R.a,AFS63,i} [kg/a]	Stoffabtrag der Teilfläche B _{R,a,AFS63,i} [kg/a]
Dachfläche	7.330,00	D	T.	280	205,24
Hoffläche	5.300,00	V1	ì	280	148,40
Wohnstraße	4.810,00	V1	i	280	134,68
•	Σ = 17.440,00 m ²				Σ = 488,32 kg/a

Bemessungswerte

Basis der stofflichen Nachweisführung:

Angeschlossene befestigte Fläche, Ab.a. 17.440,00 m²

Jährlicher Stoffabtrag AFS63 des betrachteten Gebietes, BR,a,AFS63. 488,32 kg/a

Flächenspezifischer Stoffabtrag AFS63 des betrachteten Gebietes, h_{R,8,AFS63}: 280,00 kg/(ha*a)

Erforderlicher Wirkungsgrad der Behandlungsmaßnahme, η_{erf} 0,00 %

Erforderliche Behandlungsanlage(n) gemäß DWA-A 102-2/BWK-A 3-2, Pkt. 6.1.3.4

Bei der Bemessung wird eine vollständige Behandlung des Ableitung: Niederschlagswassers in der Behandlungsanlage

(Vollstrombehandlung) berücksichtigt.

Angeschlossene befestigte Fläche je Behandlungsanlage, A_{b,a,Sedi}

Wirksamkeit des Stoffrückhalts der Behandlungsanlage(n), η_{ges} :

BG Langfeld

Ergebnis der Bemessung gemäß DWA-A 102-2/BWK-A 3-2, Pkt. 5.2.3.2

Flächenspezifischer jährlicher Stoffaustrag AFS63 durch Regenwasserabfluss nach der Behandlung, $b_{R,e\;\text{AFS63}}$:

280,00 kg/(ha*a)

Zulässiger flächenspezifischer jährlicher Stoffaustrag AFS63 durch Regenwasserabflüsse, $b_{R,e,zul,AFS63}$:

Nachweis

 $b_{R,e,AFS63} \le b_{R,e,zul,AFS63}$

280,00 kg/(ha*a) \leq 280,00 kg/(ha*a) = Nachweis erfüllt

Der Typ sowie die notwendige Anzahl der Behandlungsanlage(n) werden nach Abschnitt 6.1.3.4 des DWA-A 102-2/BWK-A 3-2 unter Verwendung des Nachweisverfahrens (Abs. 8. DWA-A 102-2/BWK-A 3-2) ermittelt. Das hierzu genutzte Verweilzeitverfahren wurde ausschließlich für Sedimentationsanlagen vom Typ SediPipe und SediPoint der Fa. FRÄNKISCHE ROHRWERKE entwickelt. Merkmale des Modells sind die Berechnung der Verweilzeit des zum Zeitpunkt tüberlaufenden Wassers an Stelle einer stationären Oberflächenbeschickung und der Ansatz des Sedimentationsvorgangs abhängig von dieser Verweilzeit sowie schließlich eine Langzeitsimulation. Dieses Modell berücksichtigt grundlegend die spezielle Strömungstrenner-Technologie von FRANKISCHE, die eine optimierte Ausgestaltung der Anlage zur Ausbildung der essentiell erforderlichen Pfropfenströmung nebst Batch-Verhalten ermöglicht. Das Modell wurde an zahlreichen großtechnischen Laborprüfungen und In-Situ-Untersuchungen validiert und in Fachkreisen publiziert. Bei Fragen zum Verweilzeitverfahren sprechen Sie uns gerne an.

um die 46-jahrige Regenreihe (01.01.1961 – 31.12.2006) der Station Mühldorf am Inn. Diese Regendaten sind die Basis für die Regenabflussspenden allgemein gültigen DIBt-Prüfverfahrens für dezentrale Regenwasserbehandlungsanlagen.